Patents Examined by Nadine G. Norton
  • Patent number: 10916407
    Abstract: Embodiments of the present disclosure generally relate to methods for conditioning an interior wall surface of a remote plasma generator. In one embodiment, a method for processing a substrate is provided. The method includes exposing an interior wall surface of a remote plasma source to a conditioning gas that is in excited state to passivate the interior wall surface of the remote plasma source, wherein the remote plasma source is coupled through a conduit to a processing chamber in which a substrate is disposed, and the conditioning gas comprises an oxygen-containing gas, a nitrogen-containing gas, or a combination thereof. The method has been observed to be able to improve dissociation/recombination rate and plasma coupling efficiency in the processing chamber, and therefore provides repeatable and stable plasma source performance from wafer to wafer.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: February 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Abdul Aziz Khaja, Mohamad Ayoub, Jay D. Pinson, II, Juan Carlos Rocha-Alvarez
  • Patent number: 10906058
    Abstract: Systems and methods for inspecting and cleaning a nozzle of a dispenser are disclosed. The systems may include a platform supporting a cleaning substrate. The cleaning substrate may have a plurality of hook structures configured to remove a material from the nozzle. The systems may also include a camera configured to capture an image of the nozzle and a controller configured to control the system. The methods may include providing a cleaning substrate having a plurality of hook structures, and moving at least one of the nozzle and the cleaning substrate relative to the other to remove a material from the nozzle. The methods may also include capturing an image of the nozzle after dispensing with a camera, processing the image to generate a value, utilizing the value to determine if the nozzle should be cleaned, and if the determination is that the nozzle should be cleaned, cleaning the nozzle.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: February 2, 2021
    Assignee: Nordson Corporation
    Inventors: Ralph C. Nelson, Jared Wilburn, Alan R. Lewis
  • Patent number: 10906130
    Abstract: A process for removing a material that is adhered to an underlying surface includes using a laser beam to heat the material to reduce the strength of adhesion between the material and the underlying surface. A stream of gas is directed at the heated material to displace the heated material from the underlying surface.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: February 2, 2021
    Assignee: Magna International Inc.
    Inventors: Hongping Gu, Boris Shulkin
  • Patent number: 10886133
    Abstract: A substrate processing method includes a substrate holding step of holding a substrate in which a pattern is defined on one major surface, a charge supply step of supplying a charge of one polarity to the substrate, a first voltage application step of applying, in parallel with the charge supply step, a voltage of the other polarity to a first electrode arranged on the other major surface of the substrate through a dielectric member, a second voltage application step of applying, after the first voltage application step, a voltage of the one polarity to the first electrode while keeping a state where a ground connection of the substrate is released and a drying step of removing, in parallel with the second voltage application step, a liquid from the one major surface of the substrate so as to dry the substrate.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: January 5, 2021
    Inventors: Daisuke Shimizu, Masayuki Otsuji, Shota Iwahata
  • Patent number: 10886138
    Abstract: An etching shape can be suppressed from having non-uniform pattern. A substrate processing method includes burying an organic film in a recess surrounded by a silicon-containing film formed on a sidewall of a pattern of photoresist on a target film; and etching or sputtering the organic film and the silicon-containing film under a condition in which a selectivity thereof is about 1:1.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: January 5, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Timothy Tianshyun Yang, Shinya Morikita, Kiyohito Ito, Michiko Nakaya, Masanobu Honda
  • Patent number: 10879066
    Abstract: In a mask pattern forming method, a resist film is formed over a thin film, the resist film is processed into resist patterns having a predetermined pitch by photolithography, slimming of the resist patterns is performed, and an oxide film is formed on the thin film and the resist patterns after an end of the slimming step in a film deposition apparatus by supplying a source gas and an oxygen radical or an oxygen-containing gas. In the mask pattern forming method, the slimming and the oxide film forming are continuously performed in the film deposition apparatus.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: December 29, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Kazuhide Hasebe, Shigeru Nakajima, Jun Ogawa, Hiroki Murakami
  • Patent number: 10863629
    Abstract: A method of manufacturing a through hole of a substrate includes forming, to the substrate, a cutting hole surrounding a removal-target-part such that a connection part of the substrate remains, the connection part that connects the removal-target-part that is removed from the substrate and a remaining part other than the removal-target-part that has been removed, along a cutting line of the through hole formed to the substrate; applying plating on an area including an inner peripheral wall face of the cutting hole of the substrate; applying a film covering an opening of the cutting hole on a surface of the substrate applied with the plating and performing exposure and development of the film to form an etching resist covering an area including the opening of the cutting hole; performing etching of the plating applied on the substrate; removing the etching resist; and cutting the connection part to remove the removal-target-part.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: December 8, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Kiyoyuki Hatanaka, Shigeru Sugino, Takahiro Kitagawa, Ryo Kanai, Nobuo Taketomi, Mitsunori Abe
  • Patent number: 10861739
    Abstract: A process is provided in which low-k layers are protected from damage by the use of thermal decomposition materials. In one embodiment, the low-k layers may be low-k dielectric layers utilized in BEOL process steps. The thermal decomposition materials may be utilized to replace organic layers that typically require ashing processes to remove. By removing the need for certain ashing steps, the exposure of the low-k dielectric layer to ashing processes may be lessened. In another embodiment, the low-k layers may be protected by plugging openings in the low-k layer with the thermal decomposition material before a subsequent process step that may damage the low-k layer is performed. The thermal decomposition materials may be removed by a thermal anneal process step that does not damage the low-k layers.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: December 8, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yuki Kikuchi, Toshiharu Wada, Kaoru Maekawa, Akiteru Ko
  • Patent number: 10851249
    Abstract: The invention relates to flame-retardant foam coatings for textile sheet products, wherein the coatings include plate-like expandable graphite which has a reduced salt content and a particle distribution with a proportion of >80 percent by weight having a diameter of at least 0.2 mm, and/or a minimum proportion of 70% having a mesh size of >50 mesh (0.3 mm), at least one binder and at least one foam stabilizer, and also processes for the production thereof, the use thereof for producing textile sheet products and also textile sheet products having such flame-retardant foam coatings.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: December 1, 2020
    Inventors: Roland Lottenbach, Vedran Gartmann
  • Patent number: 10847379
    Abstract: An etching method includes: adsorbing an adsorbate based on a processing gas containing BCl3 gas onto a target object, which serves as a to-be-etched object, by: supplying H2 gas and the processing gas to a process space in which the target object is disposed; and applying power of a predetermined frequency to the process space, while supplying the H2 gas is stopped, to generate plasma in the process space; and etching the target object by generating plasma of a rare gas in the process space to activate the adsorbate.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: November 24, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Masato Sakamoto, Tadahiro Ishizaka, Takeshi Itatani
  • Patent number: 10836962
    Abstract: An etchant composition includes a silane compound represented by the following Chemical Formula 1: wherein R1 to R6 are independently hydrogen, halogen, a substituted or unsubstituted C1-C20 hydrocarbyl group, a phenyl group, a C1-C20 alkoxy group, a carboxy group, a carbonyl group, a nitro group, a tri (C1-C20)alkylsilyl group, a phosphoryl group, or a cyano group, L is a direct bond or C1-C3 hydrocarbylene, A is an n-valent radical, and n is an integer of 1 to 4.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: November 17, 2020
    Assignees: SK Innovation Co., Ltd., SK-Materials Co., Ltd.
    Inventors: Cheol Woo Kim, Yu Na Shim, Kwang Kuk Lee, Young Bom Kim, Jin Kyung Jo
  • Patent number: 10840097
    Abstract: In some embodiments, a method of a semiconductor process includes conformally forming a spacer layer over a plurality of mandrels that are disposed over a mask layer, portions of the spacer layer disposed over opposing sidewalls of adjacent ones of the plurality of mandrels defining trenches therebetween, filling the trenches with a dummy material, and removing first portions of the dummy material in the trenches, thereby forming a plurality of openings in the dummy material. The method further includes filling the plurality of openings with a first material, removing a remaining portion of the dummy material in the trenches, and removing the plurality of mandrels after the removing the dummy material.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: November 17, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Yi-Nien Su
  • Patent number: 10829846
    Abstract: A framework of copper oxide dendrites is formed on a copper substrate, and these are then coated or plated with silver, gold, or an equivalent metal to create metal-coated dendrites with nano-structures, favorably in range of 50 to 200 nanometers. The framework of metal-coated dendrites are well suited for use in surface-enhanced Raman spectroscopy and other practical applications.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: November 10, 2020
    Inventors: Lloyd Ploof, Jody Ray McRedmond, Thomas Joseph Basile
  • Patent number: 10821464
    Abstract: A system for treating a surface and applying adhesive to an already treated portion of the surface concurrently is presented. The system comprises surface treatment equipment, adhesive application equipment, and a common feed system. The surface treatment equipment is configured to treat the surface of an elongated member. The adhesive application equipment is configured to apply adhesive to the already treated portion of the surface. The common feed system feeds the elongated member beneath the surface treatment equipment and the adhesive application equipment concurrently.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: November 3, 2020
    Assignee: The Boeing Company
    Inventors: Richard Allen Miller, II, Marcus Anthony Belcher, Stephen Howard Williams
  • Patent number: 10814361
    Abstract: In a particle beam apparatus and a method for operating a particle beam apparatus, the particle beam apparatus has a column having a particle-beam optical system for generating a particle beam, to thereby expose a desired pattern in a vacuum sample chamber in an exposure operation. In a cleaning operation, a regulable gas stream having photodissociatable gas is fed to the column and/or the vacuum sample chamber via a gas-feed system. The photodissociation of the supplied gas is brought about in the cleaning operation with the aid of a plurality of light sources distributed spatially in the column and/or in the vacuum sample chamber. In the cleaning operation, individual light sources are able to be switched on and off selectively with respect to time via a control unit connected to the light sources, in order to clean individual elements in the column and/or in the vacuum sample chamber in targeted fashion.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: October 27, 2020
    Assignee: VISTEC ELECTRON BEAM GMBH
    Inventor: Christian Borschel
  • Patent number: 10811275
    Abstract: Bending of a hole or a groove formed in a multilayered film including silicon oxide films and silicon nitride films alternately stacked on top of each other is suppressed. A plasma etching method includes a first etching process of etching, by plasma, the multilayered film including the silicon oxide films and the silicon nitride films alternately stacked on top of each other; and a second etching process of etching, by plasma, the multilayered film under a processing condition that an inclination of a portion of an inner sidewall of the hole or the groove, which is formed by the etching of the multilayered film, corresponding to the silicon nitride film with respect to a depth direction of the hole or the groove is reduced.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: October 20, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Taku Gohira, Yuya Minoura
  • Patent number: 10800653
    Abstract: A manufacturing method of micro channel structure is disclosed and includes steps of: providing a substrate; depositing and etching to form a first insulation layer; depositing and etching to form a supporting layer; depositing and etching to form a valve layer; depositing and etching to form a second insulation layer; depositing and etching to form a vibration layer, a lower electrode layer and a piezoelectric actuating layer; providing a photoresist layer and depositing and etching to form a plurality of bonding pads; depositing and etching to from a mask layer; etching to form a first chamber; and etching to form a second chamber.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: October 13, 2020
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai
  • Patent number: 10800004
    Abstract: A system controls a flow of a chemical mechanical polish (CMP) slurry into a chamber to form a slurry reservoir within the chamber. Once the slurry reservoir has been formed within the chamber, the system moves a polishing head to position and force a surface of a wafer that is attached to the polishing head into contact with a polishing pad attached to a platen within the chamber. A wafer/pad interface is formed at the surface of the wafer forced into contact with the polishing pad and the wafer/pad interface is disposed below an upper surface of the slurry reservoir. During CMP processing, the system controls one or more of a level, a force, and a rotation of the platen, a position, a force and a rotation of the polishing head to conduct the CMP processing of the surface of the wafer at the wafer/pad interface.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: October 13, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wen Liu, Hao-Yun Cheng, Che-Hao Tu, Kei-Wei Chen
  • Patent number: 10787592
    Abstract: Acid chemical mechanical polishing compositions and methods have enhanced defect inhibition and selectively polish silicon nitride over silicon dioxide in an acid environment. The acid chemical mechanic polishing compositions include poly(2-ethyl-2-oxazoline) polymers, anionic functional colloidal silica particles, amine carboxylic acids and have a pH of 5 or less.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: September 29, 2020
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, I
    Inventors: Naresh Kumar Penta, Kwadwo E. Tettey, Matthew Van Hanehem
  • Patent number: 10772491
    Abstract: A method of cleaning an endoscope in a computer-controlled washer/disinfector comprising the steps of connecting each lumen of an endoscope to a fluid distribution system for selectively conveying pressurized air or pressurized fluids through lumens in an endoscope; identifying the type of endoscope to be cleaned in said washer/disinfector; determining a blockage threshold flow coefficient for each lumen for said endoscope to be cleaned; pressurizing each lumen in said endoscope individually and determining an actual flow coefficient through said lumen; determining whether said endoscope is suitable for cleaning by comparing said actual flow coefficients for a lumen in said endoscope to said blockage threshold flow coefficient for said lumen; and determining whether a connection to a lumen in said endoscope is properly connected based upon said flow coefficient through said lumen.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: September 15, 2020
    Assignee: STERIS INC.
    Inventors: Alain Chouinard, Louis Martineau, Nicolas Verreault, Maxime Robert