Patents Examined by Nathan W. Ha
  • Patent number: 10490734
    Abstract: Provided is a magnetoresistance effect device on which a magnetoresistance effect element having an excellent withstand voltage characteristic is mounted. The magnetoresistance effect device includes: an interlayer insulating layer; a through electrode that passes through the interlayer insulating layer and is exposed on at least one surface of the interlayer insulating layer; and a magnetoresistance effect element that is laminated on the through electrode. A Vickers hardness difference between the interlayer insulating layer and the through electrode on a lamination surface on which the magnetoresistance effect element is laminated is 3 GPa or lower.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: November 26, 2019
    Assignee: TDK CORPORATION
    Inventor: Tomoyuki Sasaki
  • Patent number: 10490649
    Abstract: A method of fabricating a semiconductor structure includes depositing a dielectric layer over a gate stack, removing a portion of the gate stack to form a trench in the dielectric layer, depositing an insulating layer in the trench, depositing an adhesion layer over the insulating layer, and performing a hydrogen-containing plasma treatment on the adhesion layer.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: November 26, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih Wei Bih, Chun-Chih Lin, Yen-Yu Chen
  • Patent number: 10483269
    Abstract: A semiconductor device includes a semiconductor substrate, a first dielectric layer having a first thickness on the semiconductor substrate, a first opening having a first width in the first dielectric layer, a second dielectric layer having a second thickness disposed in a middle region of the first opening, and a third dielectric layer having a first portion and a second portion disposed on opposite sides of second dielectric layer. The first portion and the second portion have a second width smaller than the first width, and the third dielectric layer has a third thickness smaller than the first thickness and the second thickness.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: November 19, 2019
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventors: Peng Huang, Jun Li, Honggang Dai, Guanguan Gu
  • Patent number: 10483351
    Abstract: A method of manufacturing a substrate with reduced threading dislocation density is disclosed, which comprises: (i) at a first temperature, forming a first layer of wafer material on a semiconductor substrate, the first layer arranged to be doped with a first concentration of at least one dopant that is different to the wafer material; and (ii) at a second temperature higher than the first temperature, forming a second layer of the wafer material on the first layer to obtain the substrate, the second layer arranged to be doped with a progressively decreasing concentration of the dopant during formation, the doping configured to be decreased from the first concentration to a second concentration. The wafer material and dopant are different to silicon. A related substrate is also disclosed.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: November 19, 2019
    Assignees: Nanyang Technological University, Massachusetts Institute of Technology
    Inventors: Kwang Hong Lee, Chuan Seng Tan, Eugene A. Fitzgerald, Shuyu Bao
  • Patent number: 10468357
    Abstract: Embodiments of the invention include a microelectronic device and methods for forming a microelectronic device. In an embodiment, the microelectronic device includes a semiconductor die that has one or more die contacts that are each electrically coupled to a contact pad by a conductive trace. The semiconductor die may have a first elastic modulus. The microelectronic device may also include an encapsulation layer over the semiconductor die and the conductive trace. The encapsulation layer may have a second elastic modulus that is less than the first elastic modulus. The microelectronic device may also include a first strain redistribution layer within the encapsulation layer. The first strain redistribution layer may have a footprint that covers the semiconductor die and a portion of the conductive traces. The strain redistribution layer may have a third elastic modulus that is less than the first elastic modulus and greater than the second elastic modulus.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: November 5, 2019
    Assignee: Intel Corporation
    Inventors: Rajendra C. Dias, Tatyana N. Andryushchenko, Mauro J. Kobrinsky, Aleksandar Aleksov, David W. Staines
  • Patent number: 10461110
    Abstract: An image pickup element includes: a semiconductor substrate including a photoelectric conversion section for each pixel; a pixel separation groove provided in the semiconductor substrate; and a fixed charge film provided on a light-receiving surface side of the semiconductor substrate, wherein the fixed charge film includes a first insulating film and a second insulating film, the first insulating film being provided contiguously from the light-receiving surface to a wall surface and a bottom surface of the pixel separation groove, and the second insulating film being provided on a part of the first insulating film, the part corresponding to at least the light-receiving surface.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: October 29, 2019
    Assignee: Sony Corporation
    Inventors: Shuji Manda, Susumu Hiyama, Yasuyuki Shiga
  • Patent number: 10461190
    Abstract: Semiconductor structures and methods reduce contact resistance, while retaining cost effectiveness for integration into the process flow by introducing a heavily-doped contact layer disposed between two adjacent layers. The heavily-doped contact layer may be formed through a solid-phase epitaxial regrowth method. The contact resistance may be tuned by adjusting dopant concentration and contact area configuration of the heavily-doped epitaxial contact layer.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: October 29, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jean-Pierre Colinge, Carlos H. Diaz
  • Patent number: 10461140
    Abstract: The present invention provides a TFT that has a channel length particularly longer than that of an existing one, specifically, several tens to several hundreds times longer than that of the existing one, and thereby allowing turning to an on-state at a gate voltage particularly higher than the existing one and driving, and allowing having a low channel conductance gd. According to the present invention, not only the simple dispersion of on-current but also the normalized dispersion thereof can be reduced, and other than the reduction of the dispersion between the individual TFTs, the dispersion of the OLEDs themselves and the dispersion due to the deterioration of the OLED can be reduced.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: October 29, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Makoto Udagawa, Masahiko Hayakawa, Jun Koyama, Mitsuaki Osame, Aya Anzai
  • Patent number: 10453771
    Abstract: A package comprising at least one electronic chip, a first heat removal body thermally coupled to a first main surface of the at least one electronic chip and configured for removing thermal energy from the at least one electronic chip, an encapsulant encapsulating at least part of the at least one electronic chip, and part of the first heat removal body, wherein at least part of a surface of the first heat removal body is roughened.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: October 22, 2019
    Assignees: Infineon Technologies AG, HYUNDAI Motor Company, Kia Motor Corporation
    Inventors: Andreas Grassmann, Juergen Hoegerl, Kiyoung Jang, Ivan Nikitin
  • Patent number: 10453839
    Abstract: A semiconductor device is provided. The semiconductor device includes a substrate, a plurality of fins comprising a first fin, a second fin, a third fin, a fourth fin and a fifth fin, each of the plurality of protruding from the substrate in a first direction, and spaced apart from one another in a second direction that intersects the first direction and a plurality of trenches comprising a first trench, a second trench, a third trench and a fourth trench, each of the plurality of trenches being formed between adjacent fins of the plurality of fins, wherein variation of a first width of the first trench and a third width of the third trench is smaller than a first variation, wherein variation of a second width of the second trench and a fourth width of the fourth trench is smaller than a second variation, and wherein the second variation is greater than the first variation.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: October 22, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung Min Kim, Dong Won Kim, Geum Jong Bae
  • Patent number: 10446487
    Abstract: A stacked and electrically interconnected structure is disclosed. The stacked structure can include a first element comprising a first contact pad and a second element comprising a second contact pad. The first contact pad and the second contact pad can be electrically and mechanically connected to one another by an interface structure. The interface structure can comprise a passive equalization circuit that includes a resistive electrical pathway between the first contact pad and the second contact pad and a capacitive electrical pathway between the first contact pad and the second contact pad. The resistive electrical pathway and the capacitive electrical pathway form an equivalent parallel resistor-capacitor (RC) equalization circuit.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: October 15, 2019
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Shaowu Huang, Javier DeLaCruz
  • Patent number: 10431465
    Abstract: A method of fabricating a semiconductor structure includes providing a semiconductor substrate, forming a trench in the semiconductor substrate, overfilling the trench with a first semiconductor material, wherein the first semiconductor material does not have a dopant, forming a second semiconductor material on the first semiconductor material, wherein the second semiconductor material contains a dopant, and performing a thermal treatment so that the dopant in the second semiconductor material diffuses into the first semiconductor material to form a doped third semiconductor material in the trench.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: October 1, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Chih-Ming Kao, Rong-Gen Wu, Han-Wen Chang, Chun-Hsu Chen, Yu-Chun Ho
  • Patent number: 10424605
    Abstract: A method is presented for forming a semiconductor device. The method may include forming a first gate structure on a first portion of a semiconductor material located on a surface of an insulating substrate, the first gate structure including a first sacrificial layer and a second sacrificial layer and forming a second gate structure on a second portion of the semiconductor material located on the surface of the insulating substrate, the second gate structure including a third sacrificial layer. The method further includes etching the first and second dielectric sacrificial layers to create a first contact region within the first gate structure and etching the third dielectric sacrificial layer to create a second contact region within the second gate structure. The method further includes forming silicide in at least the first and second contact regions of the first and second gate structures, respectively.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: September 24, 2019
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Patent number: 10418249
    Abstract: An electronics module assembly is described herein that packages dies using a universal cavity wafer that is independent of electronics module design. In one embodiment, the electronics module assembly can include a cavity wafer having a single frontside cavity that extends over a majority of a frontside surface area of the cavity wafer and a plurality of fillports. The assembly can also include at least one group of dies placed in the frontside cavity and encapsulant that secures the position of the at least one group of dies relative to the cavity wafer. Further, a layer of the encapsulant can cover a backside of the cavity wafer.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: September 17, 2019
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Maurice Karpman, Michael Rickley, Andrew Mueller, Nicole Mueller, Jeffrey Thompson, Charles Baab
  • Patent number: 10418282
    Abstract: A method for forming an isolation structure of a semiconductor device is provided. The method includes forming a patterned dielectric structure in a first area and a second area of a substrate; forming a first isolation structure in the first area and forming a second isolation structure in the second area of the substrate; forming a cap layer over the first area and the second area of the substrate and performing an etching process to etch the cap layer of the second area completely; and performing an oxidation process on the second area to form a first oxide region over the second isolation structure and under the bottom surface of the patterned dielectric structure of the second area.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: September 17, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Pi-Kuang Chuang, Ching-Yi Hsu, Po-Sheng Hu
  • Patent number: 10410949
    Abstract: A package comprising at least one electronic chip, a first heat removal body thermally coupled to a first main surface of the at least one electronic chip and configured for removing thermal energy from the at least one electronic chip, an encapsulant encapsulating at least part of the at least one electronic chip, and part of the first heat removal body, wherein at least part of a surface of the first heat removal body is roughened.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: September 10, 2019
    Assignees: Infineon Technologies AG, HYUNDAI Motor Company, Kia Motor Corporation
    Inventors: Andreas Grassmann, Juergen Hoegerl, Kiyoung Jang, Ivan Nikitin
  • Patent number: 10403566
    Abstract: A power module (10) having a leadframe (20), a power semiconductor (30) arranged on the leadframe (20), a base plate (40) for dispersing heat generated by the power semiconductor (30) and a potting compound (50) surrounding the leadframe (20) and the power semiconductor (30), that physically connects the power semiconductor (30) and/or the leadframe (20) to the base plate (40).
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: September 3, 2019
    Assignee: Danfoss Silicon Power GmbH
    Inventors: Ronald Eisele, Frank Osterwald
  • Patent number: 10388598
    Abstract: A semiconductor process includes: (a) attaching a metal layer on a carrier; (b) removing a portion of the metal layer to form a through hole and at least one metal via, wherein the at least one metal via is disposed in the through hole, and the at least one metal via is separated from a side wall of the through hole by a space; and (c) forming a redistribution layer on the metal layer, wherein the redistribution layer is electrically connected to the at least one metal via.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: August 20, 2019
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Wen-Long Lu, Min Lung Huang
  • Patent number: 10388630
    Abstract: Semiconductor devices with duplicated die bond pads and associated device packages and methods of manufacture are disclosed herein. In one embodiment, a semiconductor device package includes a plurality of package contacts and a semiconductor die having a plurality of first die bond pads, a plurality of second die bond pads, and a plurality of duplicate die bond pads having the same pin assignments as the first die bond pads. The semiconductor die further includes an integrated circuit operably coupled to the package contacts via the plurality of first die bond pads and either the second die bond pads or the duplicate die bond pads, but not both. The integrated circuit is configured to be programmed into one of (1) a first pad state in which the first and second die bond pads are enabled for use with the package contacts and (2) a second pad state in which the first and duplicate die bond pads are enabled for use with the package contacts.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: August 20, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Nathan J. Sirocka, Trismardawi Tanadi, Andrew D. Proescholdt
  • Patent number: 10381300
    Abstract: A semiconductor device package includes a substrate, a package body, a via and an interconnect. The substrate includes a surface and a pad on the first surface. The package body covers at least a portion of the surface of the substrate. The via is disposed in the package body and includes a conductive layer and a first intermediate layer. The conductive layer is electrically connected with the pad. The first intermediate layer is adjacent to the conductive layer. The interconnect is disposed on the first intermediate layer.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: August 13, 2019
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Jen-Chieh Kao, Chang-Lin Yeh, Yi Chen, Sung-Hung Chiang