Patents Examined by Paul D Kim
  • Patent number: 11751370
    Abstract: A correction amount calculation device includes a first acquisition section and a correction amount calculation section. The first acquisition section is configured to acquire a first positional deviation amount, which is a positional deviation amount of a printing position detected by a printing inspection machine with respect to a pad position, and a second positional deviation amount, which is a positional deviation amount of a mounting position detected by a appearance inspection machine with respect to the pad position. The correction amount calculation section is configured to, based on the first positional deviation amount and the second positional deviation amount, calculate a correction amount, which is used in the mounting process of a board product to be produced later, regarding a third positional deviation amount, which is a positional deviation amount of the mounting position with respect to the printing position.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: September 5, 2023
    Assignee: FUJI CORPORATION
    Inventor: Tomokatsu Kubota
  • Patent number: 11747951
    Abstract: The present disclosure relates to an electromagnetic induction film and a manufacturing method thereof, an electromagnetic induction panel and a manufacturing method thereof, and a touch display device. The method for manufacturing the electromagnetic induction film may include: arranging a plurality of first conductors in parallel along and spaced apart along a first direction on a substrate; arranging an insulating layer on the plurality of first conductors; arranging a plurality of second conductors in parallel and spaced apart along the first direction on the insulating layer; and electrically connecting head end areas of the first conductors to head end areas of the second conductors and electrically connecting tail end areas of the first conductors to tail end areas of the second conductors to form an electromagnetic induction coil spirally surrounding the insulating layer.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: September 5, 2023
    Assignee: SHENZHEN HITEVISION TECHNOLOGY CO., LTD.
    Inventor: Yunshen Chen
  • Patent number: 11749301
    Abstract: The present disclosure includes methods of using a sacrificial, protective head overcoat during the manufacture of sliders. In some embodiments, the final trailing edge topography of the transducer devices is formed before applying the sacrificial, protective head overcoat. In some embodiments, the final trailing edge topography of the transducer devices is formed after removing the sacrificial, protective head overcoat.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: September 5, 2023
    Assignee: Seagate Technology LLC
    Inventors: Amy Jo Bergerud, Andrew Joseph Boyne, Daniel Richard Buettner, Kurt W. Wierman, Joel W. Hoehn
  • Patent number: 11749455
    Abstract: A method of fabricating a laminated magnetic core including: fabricating a magnetic-core mold on a surface, the magnetic-core mold including a first wall portion having a first sidewall, a second wall portion having a second sidewall, the second sidewall located opposite the first sidewall, the first and second sidewalls and a portion of the surface defining a mold cavity having a bottom width that is greater than a top width; depositing a seed material on the mold top surface and on a portion of the surface so as to form a conductive layer, wherein the seed material is directed toward the mold top surface and the portion of the surface of the substrate at an angle of incidence that substantially prevents deposition of the seed material on the first and second sidewalls; forming a magnetic layer on the conductive layer; and forming an insulating-sealing layer on the magnetic layer.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: September 5, 2023
    Assignee: BH Electronics, Inc.
    Inventors: Ryan K. Cobian, Richard H. Jackson, Scott B. Conklin
  • Patent number: 11742602
    Abstract: A press-fit insertion method is provided. The press-fit insertion method includes loading press-fit pins into a connector, heating a printed circuit board (PCB) defining plated through holes (PTHs) into which the press-fit pins are insertable and pressing the connector onto the PCB to insert the press-fit pins into the PTHs with the PCB remaining heated.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: August 29, 2023
    Assignee: International Business Machines Corporation
    Inventors: John R. Dangler, David J. Braun, Theron Lee Lewis
  • Patent number: 11742140
    Abstract: Provided is a wound core formed by laminating a plurality of bent bodies obtained by forming a coated grain-oriented electrical steel sheet in which a coating is formed on at least one surface of a grain-oriented electrical steel sheet so that the coating is on an outside, in a sheet thickness direction, in which the bent body has a bent region obtained by bending the coated grain-oriented electrical steel sheet and a flat region adjacent to the bent region, the number of deformation twins present in the bent region in a side view is five or less per 1 mm of a length of a center line in the sheet thickness direction in the bent region, and when a region extending 40 times a sheet thickness to both sides in a circumferential direction from a center of the bent region on an outer circumferential surface of the bent body is defined as a strain affected region, a proportion of an area where the coating is not damaged at any position along the circumferential direction in a flat region within the strain affected r
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: August 29, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takahito Mizumura, Masato Mizokami, Hisashi Mogi, Fumiaki Takahashi
  • Patent number: 11742123
    Abstract: A method of producing an oppositely magnetized magnetic structure within or on a substrate material includes: generating first and second numbers of cavities within or on a substrate material and filling the first and second numbers of cavities with first and second hard magnetic materials, respectively exhibiting first and second coercive field strengths, wherein the second coercive field strength is smaller than the first coercive field strength. The method further includes magnetizing, in a first direction, the first and second arrangements of magnetic structures, by a magnetic field having a field strength that exceeds the first and second coercive field strengths. The method further magnetizes the second arrangement of hard magnetic structures in a second direction, which differs from the first direction, by a second magnetic field having a field strength below the first coercive field strength but greater than the second coercive field strength.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: August 29, 2023
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FĂ–RDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Thomas Lisec, Fabian Lofink
  • Patent number: 11737369
    Abstract: An integrated magnetoresistive device includes a substrate of semiconductor material that is covered, on a first surface, by an insulating layer. A magnetoresistor of ferromagnetic material extends within the insulating layer and defines a sensitivity plane of the sensor. A concentrator of ferromagnetic material includes at least one arm that extends in a transversal direction to the sensitivity plane and is vertically offset from the magnetoresistor. The concentrator concentrates deflects magnetic flux lines perpendicular to the sensitivity plane so as to generate magnetic-field components directed in a parallel direction to the sensitivity plane.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: August 22, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Dario Paci, Marco Morelli, Caterina Riva
  • Patent number: 11728781
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: August 15, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 11715491
    Abstract: Methods of critical dimension (CD) uniformity control for magnetic head devices are disclosed. In some embodiments, a method can include providing a film stack, the film stack including a substrate, a magnetoresistive (MR) sensor layer, and a hard mask layer, patterning the hard mask layer using a first mask that defines critical shape patterns other than the CD, forming a mandrel pattern using a second mask that defines the CD, and forming a sidewall spacer pattern on sidewalls of the mandrel pattern, and removing the mandrel pattern.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: August 1, 2023
    Assignee: Headway Technologies, Inc.
    Inventors: Tom Zhong, Hiroshi Omine, Jianing Zhou, Kunliang Zhang, Ruhang Ding, Min Li
  • Patent number: 11715591
    Abstract: [PROBLEM] To provide a wound magnetic core and a method for manufacturing a wound magnetic core permitting improvement of insulation between ribbon layers in a wound magnetic core at which soft magnetic metal ribbon has been wound to form an annular wound body. [SOLUTION MEANS] A nonmagnetic insulating metal oxide powder is made to adhere to a surface of a soft magnetic metal ribbon having an amorphous structure; this is wound in annular fashion and made into a wound body at which the metal oxide powder intervenes between ribbon layers; the wound body is made to undergo heat treatment in a nonoxidizing atmosphere; the wound body is thereafter subjected to treatment for formation of an oxide film in an oxidizing atmosphere adjusted to be at a temperature lower than that at the heat treatment to cause oxidation of the surface of the soft magnetic metal ribbon; and spaces between ribbon layers at the wound body are moreover impregnated with resin and curing is carried out to fuse the metal oxide powder thereto.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: August 1, 2023
    Assignee: PROTERIAL, LTD.
    Inventor: Tsugitomo Nakada
  • Patent number: 11710999
    Abstract: A manufacturing method of a stator according to the disclosure includes a clamping process of clamping, among coil ends of segment coils assembled into a stator core, a pair of coil ends adjacent to each other in a circumferential direction, by a clamp jig that presses the pair of coil ends in the circumferential direction, and a welding process of welding the coil ends exposed through an opening portion provided in the clamp jig. The clamp jig includes a pressuring structure that increases a pressing force in a direction away from weld faces of the coil ends welded in the welding process, the pressuring structure being provided on at least one of sideward pressing faces that come into contact with side faces of the coil ends that are provided orthogonal to the weld faces.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: July 25, 2023
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventor: Daisuke Mizushima
  • Patent number: 11707341
    Abstract: A jig includes a base and one or more movable blocks. The base has an upper surface, which is configured to receive a substrate shaped as a flattened polyhedron having multiple facets. The one or more movable blocks are configured to move on the base so as to fold respective ones of the multiple facets, and to hold the substrate in a folded three-dimensional configuration.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: July 25, 2023
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Yehuda Algawi, Assaf Govari, Ilya Sitnitsky
  • Patent number: 11691403
    Abstract: A manufacturing apparatus of a display device includes a first jig configured to hold a first member; a second jig located under the first jig and coupled to or separated from the first jig such that the first member is locatable between the first jig and the second jig; fixing parts located at both ends of the second jig and configured to hold a second member between the first member and the second jig, the second jig including a pad; and a stage located under the pad and provided with a groove formed therethrough and having an area smaller than an area of the pad when viewed in a plan view, wherein one portion of the pad, which faces the stage, is configured to be within the groove.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: July 4, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jusuk Lee, Jaeyoung Kim, Yudeok Seo, Dongjin Ok, Sungjin Jang
  • Patent number: 11696428
    Abstract: A mounting system including a component mounter, a storage, and a unit exchange device includes a selection section that selects a combination of the specific component feeding unit and the related component feeding unit from the component feeding unit stored in the storage based on combination information indicating a combination of the characteristic rank of the specific component and a component type of the related component corresponding to the characteristic rank, and storage information including the component type, a position, and the characteristic rank of the specific component of the component feeding unit stored in the storage; and a control section that controls the unit exchange device to take out the combination of the specific component feeding unit and the related component feeding unit from the storage and to convey the combination to the component mounter.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: July 4, 2023
    Assignee: FUJI CORPORATION
    Inventors: Yoshihiro Yasui, Yukihiro Yamashita
  • Patent number: 11696427
    Abstract: A pressing device includes a screw body. The screw body includes a screw head that comprises a driver interface. The screw body also includes a screw shaft that comprises a screw tip opposite the screw head with respect to the screw shaft, exterior spiral threads between the screw head and screw tip, and an interior cavity with an opening at the screw tip. The pressing device also includes a pin partially inserted into the interior cavity. The pin comprises a first pin end inserted into the interior cavity, a pin shaft that is connected to the first pin end, and a second pin end that is connected to the pin shaft and that is exterior to the interior cavity. Applying a force to the second pin end in a direction towards the screw head causes the pin shaft to advance into to interior cavity.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: July 4, 2023
    Assignee: International Business Machines Corporation
    Inventors: XiYuan Yin, Tao Song, Qiuyi Yu, Rui Ma, WeiFeng Zhang
  • Patent number: 11684276
    Abstract: An implantable wireless sensor is provided for determining a pressure of a lumen in a body. The sensor comprises a sensor body comprising a plurality of substrates, at least a portion of the substrates comprising a first dielectric material. An LC resonant circuit is contained with the sensor body. A capacitance of the LC resonant circuit is configured to vary in response to changes in pressure in the lumen. A first anchoring element is coupled to a proximal end of the sensor body and a second anchoring element is coupled to a distal end of the sensor body. The first and second anchoring elements are configured to lodge the sensor body within the lumen. A second dielectric material, different than the first dielectric material, is provided over at least a portion of at least one of the plurality of substrates.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: June 27, 2023
    Assignee: TC1, LLC
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Patent number: 11688432
    Abstract: An approach for assembling a hard drive to a hard drive carrier is provided. The approach includes an ergonomic tool to aid with assembly. The ergonomic tool allows for a reduction in assembly time and prevents damage to the components. The ergonomic tool comprising of a base having a first surface and a first end open for receiving the components. The tool has a set of walls rising from the base, a first wall rising from the base proximate a second end opposite the first end and a pair of opposing side walls including voids rising from the first surface between the first end and the second end, to form a slot there between to receive the components within and adjacent the first surface. The tool has a releasable hold mechanism that aligns the components during assembly.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: June 27, 2023
    Assignee: International Business Machines Corporation
    Inventors: Jonathan Oswaldo Lara Dominguez, Victor Arturo Tapia Jimenez, Luis Cruz Mejia, Oscar Eduardo Flores Pantoja, Jesus Ernesto Ibarra Hernandez
  • Patent number: 11688540
    Abstract: An electronic component that has fewer cracks during production is provided. The electronic component includes an outer electrode on a multilayer body, which includes an inner glass layer, a magnetic material layer on top and bottom surfaces of the inner glass layer, and an outer glass layer on top and bottom surfaces of the magnetic material layer. The insulating layers of the inner glass layer and the outer glass layers contain a dielectric glass material that contains a glass material containing at least K, B, and Si, quartz, and alumina. The glass material content of each insulating layer of the inner glass layer ranges from approximately 60%-65% by weight, the quartz content of each insulating layer of the inner glass layer ranges from approximately 34%-37% by weight, and the alumina content of each insulating layer of the inner glass layer ranges from approximately 0.5%-4% by weight.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: June 27, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kouhei Matsuura, Morihiro Hamano, Keiichi Tsuduki
  • Patent number: 11682850
    Abstract: An electric connector terminal assembly which allows numerous different terminal connector ends and wire diameters to be connected to a single size and type crimp cylinder using an rolled metal strip insert. Preferably, the metal strip is made of copper, and preferably the copper strip is coated with tin. The metal strip is then formed into a cylinder for insertion to the crimp cylinder. A method for connecting a crimp terminal to an electric wire is also disclosed. The method requires cutting a metal strip to form a plurality of parallel compliant members (e.g., fingers) connected to a base, rolling the cut strip to form a cylindrical insert, positioning the insert within a crimp cylinder of an electric connector with the fingers extending toward the mating end, inserting an electric wire within the cylindrical insert, and crimping the crimp cylinder to secure the electric wire within the cylindrical insert and crimp cylinder.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: June 20, 2023
    Assignee: Optimal Ventures, LLC
    Inventors: Daniel J. Williams, Rafael Belfiore Conde Ramalho, Stephen M. Oshgan, Walt Sedlacek, Mark Weindling