Patents Examined by Raj R Gupta
  • Patent number: 9716187
    Abstract: In one embodiment, a trench Schottky rectifier includes a termination trench and active trenches provided in a semiconductor layer. The active trenches are configured to be at a shallower depth than the termination trench to provide a trench depth difference. The selected trench depth difference in combination with one or more of the dopant concentration of the semiconductor layer, the thickness of the semiconductor layer, active trench width to termination trench width, and/or dopant profile of the semiconductor layer provide a semiconductor device having improved performance characteristics.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: July 25, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mohammed Tanvir Quddus, Mihir Mudholkar, Michael Thomason
  • Patent number: 9716004
    Abstract: A crystal laminate structure, in which crystals can be epitaxially grown on a ?-Ga2O3-based substrate with high efficiency to produce a high-quality ?-Ga2O3-based crystal film on the substrate; and a method for producing the crystal laminate structure are provided. The crystal laminate structure includes: a ?-Ga2O3-based substrate, of which the major face is a face that is rotated by 50 to 90° inclusive with respect to face; and a ?-Ga2O3-based crystal film which is formed by the epitaxial crystal growth on the major face of the ?-Ga2O3-based substrate.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: July 25, 2017
    Assignee: TAMURA CORPORATION
    Inventor: Kohei Sasaki
  • Patent number: 9698282
    Abstract: An optoelectronic component including a connection carrier comprising a structured carrier strip in which interspaces are filled with an electrically insulating material and an optoelectronic semiconductor chip attached and electrically connected to a top portion of the connection carrier, wherein the electrically insulating material terminates substantially flush with the carrier strip in places or the carrier strip projects beyond the electrically insulating material, and the carrier strip is not covered by the electrically insulating material on the top portion and/or on a bottom portion of the connection carrier.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: July 4, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Harald Jaeger, Michael Zitzlsperger
  • Patent number: 9698185
    Abstract: Embodiments of an image sensor pixel that includes a photosensitive element, a floating diffusion region, and a transfer device. The photosensitive element is disposed in a substrate layer for accumulating an image charge in response to light. The floating diffusion region is dispose in the substrate layer to receive the image charge from the photosensitive element. The transfer device is disposed between the photosensitive element and the floating diffusion region to selectively transfer the image charge from the photosensitive element to the floating diffusion region. The transfer device includes a buried channel device including a buried channel gate disposed over a buried channel dopant region. The transfer device also includes a surface channel device including a surface channel gate disposed over a surface channel region. The surface channel device is in series with the buried channel device. The surface channel gate has the opposite polarity of the buried channel gate.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: July 4, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Sing-Chung Hu, Hsin-Chih Tai, Duli Mao, Manoj Bikumandla, Wei Zheng, Yin Qian, Zhibin Xiong, Vincent Venezia, Keh-Chiang Ku, Howard E. Rhodes
  • Patent number: 9685592
    Abstract: One embodiment of the surface mount LED package includes a lead frame and a plastic casing at least partially encasing the lead frame. The lead frame includes a plurality of electrically conductive chip carriers. There is an LED disposed on each one of the plurality of electrically conductive chip carriers. A profile height of the surface mount LED package is less than about 1.0 mm.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: June 20, 2017
    Assignee: Cree Huizhou Solid State Lighting Company Limited
    Inventors: Chi Keung Chan, Chak Hau Pang, Fei Hong Li, Yue Kwong Lau, Jun Zhang, David Todd Emerson
  • Patent number: 9646882
    Abstract: Methods and structures of connecting at least two integrated circuits in a 3D arrangement by a zigzag conductive chain are disclosed. The zigzag conductive chain, acting as a spring or self-adaptive contact structure (SACS) in a wafer bonding process, is designed to reduce bonding interface stress, to increase bonding interface reliability, and to have an adjustable height to close undesirable opens or voids between contacts of the two integrated circuits.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: May 9, 2017
    Inventor: Huilong Zhu
  • Patent number: 9648741
    Abstract: An electronic device includes; a first substrate; a second substrate Located facing the first substrate; a resin layer formed between the first substrate and the second substrate and having a first thermal expansion coefficient; a conductor via penetrating the first substrate and the resin layer; a barrier film covering a side surface of the conductor via; a first film formed between the resin layer and the barrier film and having viscoelasticity; and a second film formed between the first film and the barrier film and having a second thermal expansion coefficient lower than the first thermal expansion coefficient.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: May 9, 2017
    Assignee: FUJITSU LIMITED
    Inventor: Yoriko Mizushima
  • Patent number: 9646855
    Abstract: Semiconductor device including a metal carrier substrate. Above the carrier substrate a first semiconductor layer of Alx1Gay1Inz1N (x1+y1+z1=1, x1?0, y1?0, z1?0) is formed. A second semiconductor layer of Alx2Gay2Inz2N (x2+y2+z2=1, x2>x1, y2?0, z2?0) is arranged on the first semiconductor layer and a gate region is arranged on the second semiconductor layer. The semiconductor device furthermore includes a source region and a drain region, wherein one of these regions is electrically coupled to the metal carrier substrate and includes a conductive region extending through the first semiconductor layer.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: May 9, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Haeberlen, Walter Rieger, Christoph Kadow, Markus Zundel
  • Patent number: 9640643
    Abstract: An insulated gate bipolar transistor having a gate electrode (7) and an emitter electrode (9) is provided in a transistor region. A termination region is arranged around the transistor region. A first N type buffer layer (18) is provided below an N type drift layer (1) in the transistor region. A P type collector layer (19) is provided below the first N type buffer layer (18). A second N type buffer layer (20) is provided below the N type drift layer (1) in the termination region. A collector electrode (21) is directly connected to the P type collector layer (19) and the second N type buffer layer (20). An impurity concentration of the second N type buffer layer (20) decreases as a distance from the collector electrode (21) decreases. The second N type buffer layer (20) does not form any ohmic contact with the collector electrode (21).
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: May 2, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Ze Chen, Katsumi Nakamura
  • Patent number: 9634134
    Abstract: An embedded transistor for an electrical device, such as a DRAM memory cell, and a method of manufacture thereof is provided. A trench is formed in a substrate and a gate dielectric and a gate electrode formed in the trench of the substrate. Source/drain regions are formed in the substrate on opposing sides of the trench. In an embodiment, one of the source/drain regions is coupled to a storage node and the other source/drain region is coupled to a bit line. In this embodiment, the gate electrode may be coupled to a word line to form a DRAM memory cell. A dielectric growth modifier may be implanted into sidewalls of the trench in order to tune the thickness of the gate dielectric.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: April 25, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Wei Ting, Chun-Yang Tsai, Kuo-Ching Huang
  • Patent number: 9634038
    Abstract: There is provided a TFT backplane having at least one TFT with oxide active layer and at least one TFT with poly-silicon active layer. In the embodiments of the present disclosure, at least one of the TFTs implementing the circuit of pixels in the active area is an oxide TFT (i.e., TFT with oxide semiconductor) while at least one of the TFTs implementing the driving circuit next to the active area is a LTPS TFT (i.e., TFT with poly-Si semiconductor).
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: April 25, 2017
    Assignee: LG Display Co., Ltd.
    Inventors: Hoiyong Kwon, MiReum Lee, Hyoung-Su Kim
  • Patent number: 9633952
    Abstract: Provided is a substrate structure, including: a first substrate and a second substrate arranged correspondingly. A first surface of the first substrate faces a second surface of the second substrate, wherein the first surface is successively arranged with a conductor interconnection layer and a bonding layer, with the bonding layer connecting the first substrate and the conductor interconnection layer to the second substrate. The substrate structure and a method for manufacturing the same. The second substrate can serve as a support substrate and the first substrate as a substrate for directly manufacturing a device. However, the first substrate is formed by the growth of a crystal without the problem of thickness and stress thereof, thereby avoiding unnecessary stress and further improving the performance of the device formed in the first substrate.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: April 25, 2017
    Assignee: MEMSEN ELECTRONICS INC.
    Inventor: Lianjun Liu
  • Patent number: 9625626
    Abstract: Embodiments of the present invention disclose a display motherboard and a manufacturing method thereof. The display motherboard includes a plurality of process areas, the process area includes a plurality of display panels and the display panel includes a color filter substrate and an array substrate provided opposite to each other. The technical solution of the present invention first determines the process area, to which the display panel belongs, by the predetermined number for transitional sub-pixels in the part of the non-display area on one side of the display area on the color filter substrate, and then determines the specific position of the display panel in the process area, to which the display panel belongs, by the location identifier on the array substrate, so that the identification for the display panel is realized, which improves capacity of production line while optimizing design space of peripheral area for the display panel.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: April 18, 2017
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., HEFEI BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Hui Wang, Yuanhui Guo, Chun Wang, Junsheng Chen, Xiaohe Li
  • Patent number: 9620632
    Abstract: A semiconductor device includes: a semiconductor substrate, an upper electrode, a lower electrode and a gate electrode. In the semiconductor substrate, a body region, a pillar region, and a barrier region are formed. The pillar region has an n-type impurity, is formed on a lateral side of the body region, and extends along a depth from a top surface of the semiconductor substrate to a lower end of the body region. The barrier region has an n-type impurity and is formed on a lower side of the body region and the pillar region. The barrier region is formed on the lower side of the pillar region. An n-type impurity concentration distribution in a depth direction in the pillar region and the barrier region has a maximum value in the pillar region. The n-type impurity concentration distribution has a folding point on a side deeper than the maximum value.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: April 11, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Jun Okawara, Yusuke Yamashita, Satoru Machida
  • Patent number: 9613965
    Abstract: An embedded transistor for an electrical device, such as a DRAM memory cell, and a method of manufacture thereof is provided. A trench is formed in a substrate and a gate dielectric and a gate electrode formed in the trench of the substrate. Source/drain regions are formed in the substrate on opposing sides of the trench. In an embodiment, one of the source/drain regions is coupled to a storage node and the other source/drain region is coupled to a bit line. In this embodiment, the gate electrode may be coupled to a word line to form a DRAM memory cell.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: April 4, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Wei Ting, Kuo-Ching Huang
  • Patent number: 9608100
    Abstract: According to example embodiments, a high electron mobility transistor (HEMT) includes: stack including a buffer layer, a channel layer containing a two dimensional electron gas (2DEG) channel, and a channel supply layer sequentially stacked on each other, the stack defining a first hole and a second hole that are spaced apart from each other. A first electrode, a second electrode, and third electrode are spaced apart from each other along a first surface of the channel supply layer. A first pad is on the buffer layer and extends through the first hole of the stack to the first electrode. A second pad is on the buffer layer and extends through the second hole of the stack to the second electrode. A third pad is under the stack and electrically connected to the third electrode.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: March 28, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyuk-soon Choi, Jong-seob Kim, Jai-kwang Shin, Jae-joon Oh, Jong-bong Ha, In-jun Hwang
  • Patent number: 9589876
    Abstract: A semiconductor device is made by forming solder bumps over a copper carrier. Solder capture indentations are formed in the copper carrier to receive the solder bumps. A semiconductor die is mounted to the copper carrier using a die attach adhesive. The semiconductor die has contact pads formed over its active surface. An encapsulant is deposited over the copper carrier, solder bumps, and semiconductor die. A portion of the encapsulant is removed to expose the solder bumps and contact pads. A conductive layer is formed over the encapsulant to connect the solder bumps and contact pads. The conductive layer operates as a redistribution layer to route electrical signals from the solder bumps to the contact pads. The copper carrier is removed. An insulating layer is formed over the conductive layer and encapsulant. A plurality of semiconductor devices can be stacked and electrically connected through the solder bumps.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: March 7, 2017
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Zigmund R. Camacho, Lionel Chien Hui Tay, Henry D. Bathan, Dioscoro A. Merilo, Jeffrey D. Punzalan
  • Patent number: 9570316
    Abstract: A method of manufacturing a semiconductor device includes forming a first conductive structure on a substrate, forming an insulation layer on a sidewall of the first conductive structure, forming a second conductive structure a distance apart from the first conductive structure with the insulation layer therebetween, first removing a portion of the insulation layer by performing a first dry cleaning operation, second removing a reactant product used in the first dry cleaning operation or a first byproduct generated as a result of the first dry cleaning operation by performing a first purge operation, and third removing at least a portion of the remaining insulation layer by performing a second dry cleaning operation to form an air gap between the first and second conductive structures.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: February 14, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mong-sup Lee, Sang-jun Lee, Yoon-ho Son
  • Patent number: 9564346
    Abstract: A package carrier includes: (1) a dielectric layer; (2) a first electrically conductive pattern, embedded in the dielectric layer and disposed adjacent to a first surface of the dielectric layer, and including a plurality of first pads; (3) a plurality of first electrically conductive posts, extending through the dielectric layer, wherein each of the first electrically conductive posts includes a first electrically conductive post segment connected to at least one of the first pads and a second electrically conductive post segment connected to the first electrically conductive post segment, and a lateral extent of the first electrically conductive post segment is different from a lateral extent of the second electrically conductive post segment; and (4) a second electrically conductive pattern, disposed adjacent to a second surface of the dielectric layer, and including a plurality of second pads connected to respective ones of the second electrically conductive post segments.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: February 7, 2017
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Yuan-Chang Su, Shih-Fu Huang, Chia-Cheng Chen
  • Patent number: 9558992
    Abstract: A metal wiring for applying a voltage to a semiconductor component of a semiconductor device, the semiconductor device comprising a low voltage applying region adjacent to a high voltage applying region, is provide. The metal wiring includes: an isolator region, a first lower metal layer electrically connected to the semiconductor component, a first upper metal layer configured to be electrically connected to an external power supply, and a plurality of inter-metal dielectric layers deposited between the first lower metal layer and the first upper metal layer, each of the plurality of inter-metal dielectric layers comprising at least one contact plug for providing an electrical connection between the first lower metal layer and the first upper metal layer.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: January 31, 2017
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Kwan Soo Kim, Tae Jong Lee, Kang Sup Shin, Si Bum Kim, Yang Beom Kang, Jong Yeul Jeong