Patents Examined by Richard G Hutson
  • Patent number: 10131887
    Abstract: Disclosed are mutant DNA polymerases having increased 3?-mismatch discrimination relative to a corresponding, unmodified polymerase. The mutant polymerases are useful in a variety of disclosed primer extension methods. Also disclosed are related compositions, including recombinant nucleic acids, vectors, and host cells, which are useful, e.g., for production of the mutant DNA polymerases.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: November 20, 2018
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Fred Reichert, Keith Bauer, Thomas W. Myers
  • Patent number: 10131886
    Abstract: Disclosed are mutant DNA polymerases having increased 3?-mismatch discrimination relative to a corresponding, unmodified polymerase. The mutant polymerases are useful in a variety of disclosed primer extension methods. Also disclosed are related compositions, including recombinant nucleic acids, vectors, and host cells, which are useful, e.g., for production of the mutant DNA polymerases.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: November 20, 2018
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Fred Reichert, Keith Bauer, Thomas W. Myers
  • Patent number: 10113156
    Abstract: Stabilized reverse transcriptase fusion proteins including a thermostable reverse transcriptase connected to a stabilizer protein are described. Attaching the stabilizer protein to the thermostable reverse transcriptase stabilizes the fusion protein and can aid in its purification, provide increased solubility, allow for longer storage, or allow the fusion protein to be used under more rigorous conditions such as higher temperature. The stabilized reverse transcriptase fusion protein can also include a linker between the stabilizer protein and the thermostable reverse transcriptase. The stabilized reverse transcriptase fusion proteins are suitable for use in nucleic acid amplification methods such as the reverse transcription polymerase chain reaction and other applications involving cDNA synthesis.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: October 30, 2018
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Alan M. Lambowitz, Sabine Mohr, Georg Mohr, Eman Ghanem
  • Patent number: 10093973
    Abstract: Disclosed herein are modified polymerase compositions exhibiting altered polymerase activity, which can be useful in a variety of biological applications. Also disclosed herein are methods of making and using such compositions. In some embodiments, the compositions exhibit altered properties that can enhance their utility in a variety of biological applications. Such altered properties, can include, for example, altered nucleotide binding affinities, altered nucleotide incorporation kinetics, altered photostability and/or altered nanoparticle tolerance, as well as a range of other properties as disclosed herein.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: October 9, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Stephen P. Hendricks, Michael Phelan, Marian Peris, Cheng-Yao Chen, Daniel Mazur, Xinzhan Peng, Amy Castillo
  • Patent number: 10093974
    Abstract: Provided herein are systems and methods for nucleotide incorporation reactions. The systems comprise polymerases having altered nucleotide incorporation kinetics and are linked to an energy transfer donor moiety, and nucleotide molecules linked with at least one energy transfer acceptor moiety. The donor and acceptor moieties undergo energy transfer when the polymerase and nucleotide are proximal to each other during nucleotide binding and/or nucleotide incorporation. As the donor and acceptor moieties undergo energy transfer, they generate an energy transfer signal which can be associated with nucleotide binding or incorporation. Detecting a time sequence of the generated signals, or the change in the signals, can be used to determine the order of the incorporated nucleotides, and can therefore be used to deduce the sequence of the target molecule.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: October 9, 2018
    Assignee: Life Technologies Corporation
    Inventors: Joseph Beechem, Theo Nikiforov, Vi-En Choong, Xinzhan Peng, Guobin Luo, Cheng-Yao Chen, Michael Previte
  • Patent number: 10081661
    Abstract: Disclosed herein are methods and compositions for insertion of transgene sequences encoding proteins that is aberrantly expressed in disease or disorder such as a lysosomal storage disease.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: September 25, 2018
    Assignee: Sangamo Therapeutics, Inc.
    Inventors: Jeffrey C. Miller, David Paschon, Edward J. Rebar, Thomas Wechsler, Lei Zhang
  • Patent number: 10066218
    Abstract: This invention provides for an improved generation of novel nucleic acid modifying enzymes. The improvement is the fusion of a sequence-non-specific nucleic-acid-binding domain to the enzyme in a manner that enhances the ability of the enzyme to bind and catalytically modify the nucleic acid.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: September 4, 2018
    Assignee: Bio-Rad Laboratories, Inc.
    Inventor: Yan Wang
  • Patent number: 10059987
    Abstract: Methods, compositions, systems, apparatuses and kits comprising modified proteins, particularly modified nucleic acid-binding proteins with altered buffering properties are provided. For example, in some embodiments, methods of forming modified proteins including one or more amino acid modifications to achieve desired pKa values are described. Furthermore, the invention provides methods for using such modified proteins in ion-producing reactions, such as ion-based nucleic acid sequencing reactions.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: August 28, 2018
    Assignee: Life Technologies Corporation
    Inventors: John Davidson, Wolfgang Hinz, Jonathan Rothberg, Richard Whitaker
  • Patent number: 10059928
    Abstract: Modified DNA polymerases have an affinity for DNA such that the polymerase has an ability to incorporate one or more nucleotides into a plurality of separate DNA templates in each reaction cycle. The polymerases are capable of forming an increased number of productive polymerase-DNA complexes in each reaction cycle. The modified polymerases may be used in a number of DNA sequencing applications, especially in the context of clustered arrays.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: August 28, 2018
    Assignee: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Geoffrey Paul Smith, Roberto Rigatti, Tobias William Barr Ost, Shankar Balasubramanian, Raquel Maria Sanches-Kuiper
  • Patent number: 10053679
    Abstract: An object is to identify endoglucanase and ?-glucosidase genes by isolating genomic DNA containing cellulase genes, which are classified into endoglucanases or ?-glucosidases, from Acremonium cellulolyticus, and sequencing the nucleotide sequences thereof. The inventors intensively compared the amino acid sequences of known endoglucanases and ?-glucosidases with each other to find conserved region of amino acid sequences in Acremonium cellulolyticus, and various primers were designed based on the information. PCR was carried out using the various primers thus designed and genomic DNA or cDNA as a template. As a result, gene fragments of endoglucanases and ?-glucosidases were obtained. Primers were designed based on the gene fragments, and PCR was carried out to amplify nine genes of endoglucanases and ?-glucosidases. The nucleotide sequences thereof were sequenced, and the present invention was completed.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: August 21, 2018
    Assignee: MEIJI SEIKA PHARMA CO., LTD.
    Inventor: Fumikazu Yokoyama
  • Patent number: 10047349
    Abstract: A DNA polymerase, having an amino acid sequence represented by SEQ ID No. 2, or a derivative of the amino acid sequence by substitution, deletion, or addition of at least one amino acid residue. The DNA polymerase is a hybrid DNA polymerase prepared by inserting a thioredoxin binding domain (TBD) of bacteriophage T7 DNA polymerase into a DNA polymerase I (Sau) of Staphylococcus aureus. A method for preparing the DNA polymerase includes: 1) determining a corresponding position and a target substitution sequence in Sau protein for the TBD of the bacteriophage T7 DNA polymerase; 2) devising and synthesizing a primer according to a gene sequence of Sau and a sequence TBD published by GenBank; 3) cloning the Sau-TBD segment acquired in (2) to an expression vector pTrc99A to construct a recombinant vector pTrc99A-Sau-TBD; and 4) transforming Escherichia coli by the recombinant vector pTrc99A-Sau-TBD and inducing protein expression.
    Type: Grant
    Filed: September 5, 2016
    Date of Patent: August 14, 2018
    Assignee: HANGZHOU ZHONGCE BIO-SCI&TECH. CO., LTD.
    Inventors: Qi Cheng, Bing Zhai, Joseph Chow, Xianzhen Li, Guoxian Liu
  • Patent number: 10035993
    Abstract: Disclosed are mutant DNA polymerases having improved extension rates relative to a corresponding, unmodified polymerase. The mutant polymerases are useful in a variety of disclosed primer extension methods. Also disclosed are related compositions, including recombinant nucleic acids, vectors, and host cells, which are useful, e.g., for production of the mutant DNA polymerases.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: July 31, 2018
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Keith A. Bauer, Ellen Fiss, David Harrow Gelfand, Edward S. Smith, Shawn Suko, Thomas W. Myers
  • Patent number: 10023850
    Abstract: Disclosed are mutant DNA polymerases having increased 3?-mismatch discrimination relative to a corresponding, unmodified polymerase. The mutant polymerases are useful in a variety of disclosed primer extension methods. Also disclosed are related compositions, including recombinant nucleic acids, vectors, and host cells, which are useful, e.g., for production of the mutant DNA polymerases.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: July 17, 2018
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Fred Reichert, Keith Bauer, Thomas W. Myers
  • Patent number: 10017750
    Abstract: The invention relates to modified polymerase enzymes which exhibit improved incorporation of nucleotide analogs bearing substituents at the 3? position of the sugar moiety that are larger in size than the naturally occurring 3? hydroxyl group. Also described are methods of using the polymerases to incorporate nucleotides into polynucleotides, particularly in the context of DNA sequencing.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: July 10, 2018
    Assignee: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Geoffrey Paul Smith, David Mark Dunstan Bailey, Raquel Maria Sanches-Kuiper, Harold Swerdlow, David James Earnshaw
  • Patent number: 10017804
    Abstract: Recombinant microorganisms are disclosed that produce steviol glycosides and have altered expression of one or more endogenous transporter or transcription factor genes, or that overexpress one or more heterologous transporters, leading to increased excretion of steviol glycosides of interest.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: July 10, 2018
    Assignee: EVOLVA SA
    Inventors: Ernesto Simon, Iben Nordmark Anderson, Michael Dalgaard Mikkelsen, Jorgen Hansen, Veronique Douchin
  • Patent number: 10006052
    Abstract: Disclosed herein are compositions for inactivating the human CCR5 gene comprising engineered LAGLIDADG homing endonucleases (LHEs) and their derivatives, particularly derived from members of the \-Onul subfamily of LHE. Polynucleotides encoding such endonucleases, vectors comprising said polynucleotides, cells comprising or having been treated with such endonucleases, and therapeutic compositions deriving therefrom are also provided.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: June 26, 2018
    Assignees: CELLECTIS, PRECISION GENOME ENGINEERING, INC.
    Inventors: Jordan Jarjour, Alexander Astrakhan
  • Patent number: 9994886
    Abstract: Modified Epstein Barr Virus DNA polymerase for use in nucleic acid amplification, including isothermal nucleic acid amplification, in vitro are provided. Methods using and kits comprising Epstein Barr Virus DNA polymerase and its variants of this invention for nucleic acid amplification in vitro, including isothermal DNA amplification, are also provided.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: June 12, 2018
    Assignee: THE UNIVERSITY OF CONNECTICUT
    Inventor: David Isaac Dorsky
  • Patent number: 9988612
    Abstract: Disclosed are T7 RNA polymerase variants with enhanced transcriptional activity. T7 RNA polymerase variants are known which have the ability to incorporate modified ribonucleotides into growing RNA molecules. However, these variants have relatively low levels of transcriptional activity. Presented herein are mutations that increase the transcriptional activity of the variants with broad substrate range.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: June 5, 2018
    Assignee: THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Andrew D. Ellington, Adam J. Meyer
  • Patent number: 9988655
    Abstract: The present invention relates to use of inducible promoters in the production of methionine by fermentation. The present invention concerns a method for the production of methionine, its precursors or derivatives in a fermentative process comprising the following steps: culturing a modified microorganism in an appropriate culture medium comprising a source of carbon, a source of sulphur and a source of nitrogen, and recovering methionine and/or its derivatives from the culture medium, wherein in said modified microorganism, the expression of at least one gene involved in methionine production is under the control, direct or indirect, of a heterologous inducible promoter. The invention also concerned the modified microorganism used in the method.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: June 5, 2018
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Rainer Figge, Perrine Vasseur
  • Patent number: 9988613
    Abstract: Disclosed are mutant DNA polymerases having increased 3?-mismatch discrimination relative to a corresponding, unmodified polymerase. The mutant polymerases are useful in a variety of disclosed primer extension methods. Also disclosed are related compositions, including recombinant nucleic acids, vectors, and host cells, which are useful, e.g., for production of the mutant DNA polymerases.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: June 5, 2018
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Fred Reichert, Keith Bauer, Thomas W. Myers, Nancy J. Schoenbrunner, Joseph San Filippo