Patents Examined by Robert G Bachner
  • Patent number: 11895854
    Abstract: An imaging device includes at least one first pixel electrode, at least one second pixel electrode, a photoelectric converter continuously covering upper surfaces of the at least one first pixel electrode and the at least one second pixel electrode, a first counter electrode facing the at least one first pixel electrode, a second counter electrode facing the at least one second pixel electrode, and a sealing layer continuously covering upper surfaces of the first and second counter electrodes. In a plan view, a first portion of an upper surface of the photoelectric converter in an interelectrode region between the first counter electrode and the second counter electrode is more depressed than a second portion of the upper surface of the photoelectric converter in an overlap region overlapping the first counter electrode or the second counter electrode. The sealing layer is in contact with the photoelectric converter in the interelectrode region.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: February 6, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takahiro Koyanagi, Yuuko Tomekawa
  • Patent number: 11890701
    Abstract: A resistance spot welding electrode cap contains a groove at the center of the welding contact interface. During welding, because of the groove, the area of contact between the electrode cap and a metal workpiece to be soldered is reduced. In the initial stage, the overall heat generation is concentrated on the outer ring of the weld point and heat dissipation becomes slower, helping a weld nugget to form from the outside to the inside. Due to the presence of the groove, the metal workpiece expands toward the groove at the center of the electrode, thereby increasing the size of the weld nugget and reducing splash and deformation. In comparison with conventional electrode caps, the welding current required to form weld points of the same size is lower, saving on electricity costs, and weld points obtained using the same current have higher strength and stability with fewer welding defects.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: February 6, 2024
    Assignee: SHANGHAI INSTITUTE OF OPTICS AND FINE MECHANICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Shanglu Yang, Yanjun Wang, Wu Tao
  • Patent number: 11889697
    Abstract: A semiconductor device and a method of manufacturing the semiconductor device are provided. The semiconductor device includes a source structure formed on a base, an etch prevention layer formed on the source structure, bit lines, a stack structure located between the etch prevention layer and the bit lines and including conductive layers and insulating layers that are alternately stacked on each other, and a channel structure passing through the stack structure and the etch prevention layer, wherein a lower portion of the channel structure is located in the source structure and a sidewall of the lower portion of the channel structure is in direct contact with the source structure.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: January 30, 2024
    Assignee: SK hynix Inc.
    Inventor: Nam Jae Lee
  • Patent number: 11881457
    Abstract: Various embodiments disclosed relate to a semiconductor package. The present semiconductor package includes a substrate. The substrate is formed from alternating conducting layers and dielectric layers. A first active electronic component is disposed on an external surface of the substrate, and a second active electronic component is at least partially embedded within the substrate. A first interconnect region is formed from a plurality of interconnects between the first active electronic component and the second active electronic component. Between the first active electronic component and the substrate a second interconnect region is formed from a plurality of interconnects. Additionally, a third interconnect region is formed from a plurality of interconnects between the second active electronic component and the substrate.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: January 23, 2024
    Assignee: Tahoe Research, Ltd.
    Inventors: Adel A. Elsherbini, Johanna M. Swan, Shawna M. Liff, Henning Braunisch, Krishna Bharath, Javier Soto Gonzalez, Javier A. Falcon
  • Patent number: 11882688
    Abstract: A semiconductor memory device comprises a substrate, first and second lower electrode groups on the substrate and including a plurality of first and second lower electrodes, respectively, and first and second support patterns on side walls of and connecting each of the first and second lower electrodes, respectively. The first lower electrodes include a first center lower electrode arranged within a hexagonal shape defined by first edge lower electrodes. The second lower electrodes include a second center lower electrode arranged within a hexagonal shape defined by second edge lower electrodes. The first center lower electrode is spaced apart from each of the first edge lower electrodes in different first to third directions. The first support pattern is immediately adjacent to the second support pattern. The first center lower electrode is spaced apart from the second center lower electrode in a fourth direction different from the first to third directions.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: January 23, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hoon Han, Je Min Park
  • Patent number: 11881444
    Abstract: A semiconductor device according to the present invention includes: a circuit board; a semiconductor element having a main electrode; a metal frame; and a metal plate having a flat plate shape, the metal plate being disposed between the metal frame and the main electrode, wherein the metal plate and a conductive bonding material, form a stress relaxation structure which relaxes a stress applied to metal plate and the conductive bonding material, disposed between the metal frame and the semiconductor element, and the stress relaxation structure is configured such that a thickness of the metal plate is smaller than a thickness of the metal frame, and at least one convex portion is formed on the metal plate at a position which corresponds to the main electrode. The semiconductor device according to the present invention can relax a stress applied to a conductive bonding material between a semiconductor element and a metal frame even when a relatively thick metal frame is used.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: January 23, 2024
    Assignee: SHINDENGEN ELECTRIC MANUFACTURING CO., LTD.
    Inventors: Soichiro Umeda, Atsushi Kyutoku
  • Patent number: 11880779
    Abstract: This disclosure describes systems and techniques for detecting events, determining a result of each respective event using a first hypothesis source, and calculating a likelihood that a second (and/or additional) hypothesis source would determine the same result of the respective event. The calculated likelihood may then be used to be determine whether to request that the second hypothesis source determine the result of the event, determine an amount of resources of the second hypothesis source to use to make this determination, and/or like.
    Type: Grant
    Filed: March 6, 2023
    Date of Patent: January 23, 2024
    Assignee: Amazon Technologies, Inc.
    Inventors: Paul Aksenti Savastinuk, Roman Talyansky, Michael Dillon, Eli Osherovich, Gopi Prashanth Gopal
  • Patent number: 11872625
    Abstract: The present disclosure relates to the field of additive manufacturing and superalloys, particularly to a method for eliminating cracks in René 104 nickel-based superalloy prepared by laser additive manufacturing. For solving the problem that cracks are easily generated during laser additive manufacturing of René 104 nickel-based superalloy with high content of Al and Ti (Al+Ti>5 wt. %), generation of large-size cracks inside a fabricated part is suppressed by means of designing laser forming parameters and a partition scanning strategy; then stress relief annealing is performed to completely eliminate residual stress inside the fabricated part; and a spark plasma sintering process is performed to eliminate cracks inside the fabricated part and suppress the growth of grains during the sintering process.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: January 16, 2024
    Assignee: CENTRAL SOUTH UNIVERSITY
    Inventors: Zuming Liu, Kai Peng, Xueqian Lv, Fan Zhao, Quan Li, Bing Wei
  • Patent number: 11862662
    Abstract: Provided is an imaging device (1) including: an imaging element (10); and a semiconductor element (20, 30) provided to be opposed to the imaging element and electrically coupled to the imaging element. The semiconductor element includes: a wiring region (20A, 30A) provided in a middle portion and a peripheral region (20B, 30B) outside the wiring region; a wiring layer (22, 32) having a wiring line in the wiring region; a semiconductor substrate (21, 31) opposed to the imaging element with the wiring layer interposed therebetween and having a first surface (Sa, Sc) and a second surface (Sb, Sd) in order from a side of the wiring layer; and a polishing adjustment section (23, 33) including a material that is lower in polishing rate than a constituent material of the semiconductor substrate, the polishing adjustment section being disposed in at least a portion of the peripheral region and provided in a thickness direction of the semiconductor substrate from the second surface.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: January 2, 2024
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Sotetsu Saito, Suguru Saito, Nobutoshi Fujii
  • Patent number: 11862729
    Abstract: Vertical thin film transistors (TFTs) including a gate electrode pillar clad with a gate dielectric. The gate dielectric is further clad with a semiconductor layer. Source or drain metallization is embedded in trenches formed in an isolation dielectric adjacent to separate regions of the semiconductor layer. During TFT operation, biasing of the gate electrode can induce one or more transistor channel within the semiconductor layer, electrically coupling together the source and drain metallization. A width of the channel may be proportional to a height of the gate electrode pillar clad by the semiconductor layer, while a length of the channel may be proportional to the spacing between contacts occupied by the semiconductor layer. In some embodiments, a memory device may include cells comprising a vertical thin film select transistor and a capacitor (1TFT-1C).
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: January 2, 2024
    Assignee: Intel Corporation
    Inventors: Yih Wang, Abhishek Sharma, Sean Ma, Van H. Le
  • Patent number: 11862666
    Abstract: A capacitor structure and a manufacturing method thereof are disclosed in this invention. The capacitor structure includes a first electrode, a second electrode, and a capacitor dielectric stacked layer. The capacitor dielectric stacked layer is disposed between the first electrode and the second electrode, and the capacitor dielectric stacked layer includes a first dielectric layer. The first dielectric layer includes a first zirconium oxide layer and a first zirconium silicon oxide layer. A manufacturing method of a capacitor structure includes the following steps. A capacitor dielectric stacked layer is formed on a first electrode, and the capacitor dielectric stacked layer includes a first dielectric layer. The first dielectric layer includes a first zirconium oxide layer and a first zirconium silicon oxide layer. Subsequently, a second electrode is formed on the capacitor dielectric stacked layer, and the capacitor dielectric stacked layer is located between the first electrode and the second electrode.
    Type: Grant
    Filed: December 5, 2021
    Date of Patent: January 2, 2024
    Assignee: Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Chia-Wei Wu, Yu-Cheng Tung
  • Patent number: 11860404
    Abstract: A manufacturing method of a reflective display includes at least the following steps. A reflective display module having a display surface is provided. An adhesive is formed on the display surface of the reflective display module. A plurality of microstructures is formed on the adhesive. A cover plate is provided over the reflective display module, the microstructures, and the adhesive. The cover plate has a first surface, a second surface, and a third surface. The second surface is located between the first surface and the reflective display module, and the third surface is connected to the first surface and the second surface. The second surface of the cover plate is adhered to the adhesive having the microstructures thereon to bond the microstructures onto the second surface of the cover plate. A light source is disposed adjacent to the third surface of the cover plate.
    Type: Grant
    Filed: March 10, 2023
    Date of Patent: January 2, 2024
    Assignee: E Ink Holdings Inc.
    Inventors: Chang-Cheng Lo, Yue-Feng Lin
  • Patent number: 11862513
    Abstract: A manufacturing method of a semiconductor structure includes the following steps. A substrate is provided. A barrier layer is formed on the substrate. A sacrificial layer is formed on the barrier layer. An opening pattern is formed over the sacrificial layer by utilizing a photolithography process. The sacrificial layer is etched according to the opening pattern to form first trenches by using the barrier layer as an etch stop layer. A medium layer material is filled in the first trenches. The sacrificial layer is etched to form second trenches by using the barrier layer as the etch stop layer. A hard mask layer material is filled in the second trenches. The medium layer material is etched to form a hard mask layer by using the barrier layer as the etch stop layer.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: January 2, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Xifei Bao
  • Patent number: 11856749
    Abstract: Embodiments of the present application provide a memory and a method for forming the memory. The method includes: providing a substrate, and forming a bit line structure on the substrate and a first protective layer; forming a dielectric layer with which a gap between the adjacent bit line structures is filled; forming a second protective layer to cover a top surface of the first protective layer and a top surface of the dielectric layer; removing part of the dielectric layer and part of the second protective layer to form a capacitor contact hole, and exposing the first protective layer between two adjacent ones of the capacitor contact holes; forming a conductive layer with which the capacitor contact hole is filled and the top surface of the exposed first protective layer is covered, and etching part of the conductive layer to form a separate capacitor contact structure.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: December 26, 2023
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Ran Li
  • Patent number: 11854885
    Abstract: The present disclosure provides a semiconductor structure, a forming method thereof, and a semiconductor device, and relates to the technical field of semiconductor packaging processes. The method includes: providing a semiconductor substrate; forming an oxide layer on a surface of the semiconductor substrate, and etching the oxide layer to form a recess, where a through-silicon via (TSV) is provided in the semiconductor substrate and the oxide layer, and an upper end of the TSV is connected to the recess; depositing a metal layer on a surface of the recess, and forming an opening in the metal layer on a bottom surface of the recess, where the opening is connected to the TSV; and filling a second conductive material into the recess, and forming a hole in the second conductive material above the opening.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: December 26, 2023
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Chih-Wei Chang
  • Patent number: 11855176
    Abstract: Semiconductor structures are provided. The semiconductor structure includes a fin structure protruding from a substrate and a doped region formed in the fin structure. The semiconductor structure further includes a metal gate structure formed across the fin structure and a gate spacer formed on a sidewall of the metal gate structure. The semiconductor structure further includes a source/drain structure formed over the doped region. In addition, the doped region continuously surrounds the source/drain structure and is in direct contact with the gate spacer.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shahaji B. More, Chun-Hsiung Tsai, Cheng-Yi Peng, Shih-Chieh Chang, Kuo-Feng Yu
  • Patent number: 11854951
    Abstract: Provided is a semiconductor device applicable to both types of packages regardless of whether or not double bonding of a lead frame pad is allowed. The semiconductor device includes: an operational amplifier; a feedback resistor; a reference voltage generation circuit; an output transistor; a first pad which is connected to an output terminal of the output transistor, and is to be selectively connected to a lead frame pad by a bonding wire; a second pad to be selectively connected to the lead frame pad by a bonding wire; and a connection switching element provided between the first pad and the second pad. In a case in which the second pad is connected to the lead frame pad by the bonding wire, the connection switching element interrupts connection between the first pad and the second pad.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: December 26, 2023
    Assignee: ABLIC Inc.
    Inventor: Haidong Sun
  • Patent number: 11845144
    Abstract: A nanofluid laser entrainment additive manufacturing apparatus, system and method including a substrate, a dilute nanofluid of inert gas suspended nanoparticles on the substrate, a focused energy beam that irradiates the nanoparticles to selectively melt the nanoparticles, and a raster system that raster scans the focused energy beam across the inert gas suspended nanoparticles to create predetermined shapes by additive manufacturing.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: December 19, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Manyalibo Joseph Matthews
  • Patent number: 11843083
    Abstract: Monolithic LED chips are disclosed comprising a plurality of active regions on a submount, wherein the submount comprises integral electrically conductive interconnect elements in electrical contact with the active regions and electrically connecting at least some of the active regions in series. The submount also comprises an integral insulator element electrically insulating at least some of the interconnect elements and active regions from other elements of the submount. The active regions are mounted in close proximity to one another to minimize the visibility of the space during operation. The LED chips can also comprise layers structures and compositions that avow improved reliability under high current operation.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: December 12, 2023
    Assignee: CreeLED, Inc.
    Inventors: Bradley E. Williams, Kevin W. Haberern, Bennett D. Langsdorf, Manuel L. Breva
  • Patent number: 11843042
    Abstract: Structures and methods for controlling dopant diffusion and activation are disclosed. In one example, a semiconductor structure is disclosed. The semiconductor structure includes: a channel layer; a barrier layer over the channel layer; a gate electrode over the barrier layer; and a doped layer formed between the barrier layer and the gate electrode. The doped layer includes (a) an interface layer in contact with the barrier layer and (b) a main layer between the interface layer and the gate electrode. The doped layer comprises a dopant whose doping concentration in the interface layer is lower than that in the main layer.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: December 12, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Yu Chen, Wei-Ting Chang, Yu-Shine Lin, Jiang-He Xie