Patents Examined by Robert Sellers
  • Patent number: 8716401
    Abstract: A semiconductor chip laminate comprises a plurality of semiconductor chips and an adhesive layer through which the plurality of semiconductor chips are laminated, wherein the adhesive layer is composed of an adhesive composition comprising an acrylic polymer (A); an epoxy resin (B); a thermal curing agent (C); and a certain organophosphonium compound (D) as a thermal curing accelerator, and the content of the organophosphonium compound (D) relative to 100 parts by weight in total of the epoxy resin (B) and the thermal curing agent (C) is 0.001 to 15 parts by weight.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: May 6, 2014
    Assignee: Lintec Corporation
    Inventors: Yasunori Karasawa, Isao Ichikawa
  • Patent number: 8703882
    Abstract: Phosphorus-containing benzoxazine-based bisphenols and derivatives thereof are disclosed. The phosphorus-containing benzoxazine-based bisphenols are prepared by reacting DOPO with benzoxazine to form the phosphorus-containing benzoxazine-based bisphenols. The phosphorus-containing benzoxazine-based bisphenols can further to form advanced epoxy resins. The advanced epoxy resins can further be cured to form flame retardant epoxy thermosets.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: April 22, 2014
    Assignee: National Chunghsing University
    Inventors: Ching-Hsuan Lin, Hung-Tse Lin, Sheng Lung Chang, Yu-Ming Hu
  • Patent number: 8697803
    Abstract: An epoxy resin composition for encapsulating a semiconductor chip according to this invention comprises (A) a crystalline epoxy resin, (B) a phenol resin represented by general formula (1): wherein R1 and R2 are independently hydrogen or alkyl having 1 to 4 carbon atoms and two or more R1s or two or more R2s are the same or different; a is integer of 0 to 4; b is integer of 0 to 4; c is integer of 0 to 3; and n is average and is number of 0 to 10, (C) a (co)polymer containing butadiene-derived structural unit or its derivative, and (D) an inorganic filler in the amount of 80 wt % to 95 wt % both inclusive in the total epoxy resin composition.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: April 15, 2014
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Takahiro Kotani, Hidetoshi Seki, Masakatsu Maeda, Kazuya Shigeno, Yoshinori Nishitani
  • Patent number: 8685871
    Abstract: A toughening agent for use in making composites comprises an epoxy curing agent and a thermoplastic. Compositions, composites that comprise the toughening agent and associated methods of making and using the toughening agent are also disclosed.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: April 1, 2014
    Assignee: Cytec Technology Corp.
    Inventors: Paul Mark Cross, Richard Thomas Price, Dominique Ponsolle, Patrick Terence McGrail
  • Patent number: 8674039
    Abstract: The invention relates to a crosslinkable polymer powder composition redispersible in water, obtainable by means of free radical polymerization, in an aqueous medium, of one or more monomers from the group consisting of vinyl esters of straight-chain or branched alkylcarboxylic acids having 1 to 15 C atoms, methacrylates and acrylates of alcohols having 1 to 15 C atoms, vinylaromatics, olefins, dienes and vinyl halides, no epoxide-functional comonomers being copolymerized, and subsequent drying of the polymer dispersion obtained thereby, wherein, before and/or during the polymerization and/or before the drying of the polymer dispersion obtained thereby, an epoxy resin is added and, if appropriate after the drying, a curing agent crosslinking with the epoxy resin is added.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: March 18, 2014
    Assignee: Wacker Chemie AG
    Inventors: Michael Faatz, Reinhard Haerzschel
  • Patent number: 8668983
    Abstract: The present invention provides an epoxy resin composition for a fiber reinforced composite material comprising an epoxy resin (A) comprising an epoxy resin (a1) having a weight average molecular weight of up to 1,000 and an epoxy resin (a2) having a weight average molecular weight of 10,000 to 100,000 which contains at least 20% by weight of the basic skeleton of the epoxy resin (a1), a thermoplastic resin (B), and a curing agent (C). The cured composition has a co-continuous phase of the epoxy resin (A) and the thermoplastic resin (B) and/or a continuous phase of the thermoplastic resin (B). A cured product having a high toughness can be obtained from this epoxy resin composition.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: March 11, 2014
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventors: Masayuki Kawazoe, Hiroyuki Okuhira, Koichiro Miyoshi, Tomohiro Ito, Takashi Kousaka, Mitsuhiro Iwata
  • Patent number: 8664285
    Abstract: The invention relates to composite materials, containing (i) a nanoporous polymer foam, which can be obtained by reacting one or more epoxy resins with one or more amphiphilic epoxy resin hardeners in water in a phase inversion polymerization process, and (ii) one or more inorganic fillers and/or inorganic fibers, with the stipulation that hollow glass balls are excluded as fillers. Said composite materials are suitable as heat-insulating materials.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: March 4, 2014
    Assignee: Cognis IP Management GmbH
    Inventors: Paul Birnbrich, Hans-Josef Thomas, Dagmar Stahlhut-Behn
  • Patent number: 8658736
    Abstract: An epoxy resin composition comprising an epoxy resin [A], an amine-based curing agent [B] and a block copolymer [C] as components, wherein the epoxy resin [A] contains [Aa] an epoxy resin having at least one structure selected from a condensed polycyclic structure, biphenyl structure and oxazolidone ring structure; [Ab] an epoxy resin selected from a polyfunctional amine type epoxy resin [Ab1] and a liquid bisphenol type epoxy resin [Ab2], and the block copolymer [C] is at least one block copolymer selected from the group consisting of S-B-M, B-M and M-B-M. The present invention provides an epoxy resin composition that can be cured to form a cured product excellent in heat resistance, elastic modulus and toughness.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: February 25, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Shiro Honda, Noriyuki Hirano, Jun Misumi, Kaori Narimatsu
  • Patent number: 8653205
    Abstract: Disclosed is a resin composition for encapsulating a semiconductor containing an epoxy resin (A), a curing agent (B), and an inorganic filler (C), wherein the epoxy resin (A) includes an epoxy resin (A1) having a predetermined structure, and the curing agent (B) includes a phenol resin (B1) having a predetermined structure, wherein the content of a c=1 component included in the total amount of the phenol resin (B1) is not less than 40% in terms of area percentage and the content of a C?4 component is not more than 20% in terms of area percentage, as measured by the area method of gel permeation chromatography. Also disclosed is a semiconductor device obtained by encapsulating a semiconductor element with a cured product of the resin composition for encapsulating a semiconductor.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: February 18, 2014
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventor: Masahiro Wada
  • Patent number: 8648164
    Abstract: Disclosed is a method for making a low-k, flame-retardant, bi-functional benzoxazine. The method includes the steps of dissolving phosphoric diamine with various functional groups, phenolic adamantane and paraformaldehyde in a solvent at 72° C. to 88° C. for 7 to 9 hours, and cooling and introducing the solution in n-hexane to separate the low-k, flame-retardant, phosphoric, bi-functional benzoxazine.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: February 11, 2014
    Assignee: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Wen-Chiung Su, Ching-Hsuan Lin, Hung-Tse Lin, Feng-Jen Wang
  • Patent number: 8648154
    Abstract: This invention relates to a novel phosphorus-containing phenol novolac resin, use of the phosphorus-containing phenol novolac resin as a halogen-free flame retardant epoxy hardener, and an epoxy resin composition having high phosphorus content because it includes the phosphorus-containing phenol novolac resin, thereby exhibiting superior flame retardancy and heat resistance.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: February 11, 2014
    Assignee: Kolon Industries, Inc.
    Inventors: Ji Woong Kong, Sang Min Lee, Ick Kyung Sung
  • Patent number: 8637612
    Abstract: The invention relates to thermosetting compositions containing isocyanurate ring(s) prepared through chain extension of an epoxy resin (a) with carboxyl-functional oligomers (b), which are the reaction product of polyols (i) containing one or more isocyanurate ring(s) and polycarboxylic acids or their anhydrides (ii). The polyols (i) containing one or more isocyanurate ring(s) can be prepared from the reactions of tris (2-hydroxyalkyl) isocyanurates with a modifier from a caprolactone or alkylene oxide, or glycidyl ester or glycidyl ether and mixtures thereof. The epoxy-functional thermosetting compositions containing an isocyanurate ring(s) can be further reacted with unsaturated acids, preferably (meth)acrylic acid, to obtain a curable polyacrylate. Both epoxy-functional isocyanurate and acrylate-functional isocyanurate thermosetting compositions can be further modified with a polyisocyanate to produce a composition that is useful as a reactive adhesive, binder or in other applications.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: January 28, 2014
    Assignee: CCP Composites US LLC
    Inventors: Ming Yang Zhao, Chih-Pin Hsu
  • Patent number: 8637593
    Abstract: The epoxy resin molding material of the invention comprises (A) an epoxy resin and (B) a curing agent, wherein the (B) curing agent contains a polyvalent carboxylic acid condensate. The thermosetting resin composition of the invention comprises (A) an epoxy resin and (B) a curing agent, wherein the viscosity of the (B) curing agent is 1.0-1000 mPa·s at 150° C., as measured with an ICI cone-plate Brookfield viscometer.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: January 28, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Hayato Kotani, Naoyuki Urasaki, Makoto Mizutani
  • Patent number: 8633293
    Abstract: A polymer includes a reaction product of an epoxy resin, a first crosslinking agent, and a second crosslinking agent. The first crosslinking agent is reactive with the epoxy resin and has a first molecular weight. The second crosslinking agent is reactive with the epoxy resin and has a second molecular weight of at least 2.5 times greater than the first molecular weight. The polymer has a first phase having a first glass transition temperature at which the polymer is transformable between a first shape and a second shape. The second crosslinking agent is crystallizable within the polymer and thereby has a melting temperature that is detectable within the polymer.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: January 21, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Ingrid A. Rousseau
  • Patent number: 8629219
    Abstract: The present invention relates to an epoxy resin compound, a preparation method thereof, a prepreg made therefrom, and a copper cladded laminate made therefrom. The epoxy resin compound comprises: 30-80 parts by weight of epoxy resin; 20-50 parts by weight of polyphenylene ether resin of new structure with the number average molecular weight thereof being 1000-5000, which is prepared via the redistribution reaction of polyphenylene ether and phenolic resin with the existing of initiator agent; 0-50 parts by weight of filler; 1-20 parts by weight of ingredient. The epoxy resin compound of the present invention, has good heat resistance and dielectric property, and has a simple preparation process, which is good for batch production.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: January 14, 2014
    Assignee: Guangdong Shengyi Sci. Tech Co., Ltd.
    Inventors: Dong Wei, Ke Hong Fang
  • Patent number: 8623967
    Abstract: A method for preparing a functionalized polymer, the method comprising the steps of: (i) polymerizing monomer with a coordination catalyst to form a reactive polymer; and (ii) reacting the reactive polymer with a nitroso compound.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: January 7, 2014
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 8617930
    Abstract: The invention provides an adhesive sheet which can be stuck to a wafer at low temperatures of 100° C. or below, which is soft to the extent that it can be handled at room temperature, and which can be cut simultaneously with a wafer under usual cutting conditions; a dicing tape integrated type adhesive sheet formed by lamination of the adhesive sheet and a dicing tape; and a method of producing a semiconductor device using them. In order to achieve this object, the invention is characterized by specifying the breaking strength, breaking elongation, and elastic modulus of the adhesive sheet in particular numerical ranges.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: December 31, 2013
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Teiichi Inada, Michio Mashino, Michio Uruno
  • Patent number: 8618218
    Abstract: Disclosed herein is a composition comprising a compatible blend of i) 24 to less than 84.5 weight percent of a linear poly(arylene sulfide), ii) 14 to 75 weight percent of a polysiloxane/polyimide block copolymer; and iii) 0.1 to less than 2.5 weight percent of a polymeric compatibilizer having 2 or more epoxy groups per molecule. Weight percent is based on the total weight of the composition. An article made from the composition has tensile elongation greater than or equal to 60% as determined by ASTM D638 and a Notched Izod impact strength greater than 50 joules per meter as determined by ASTM D256 at room temperature.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: December 31, 2013
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Hariharan Ramalingam, Yashpal Bhandari, Gautam Chatterjee, Siva Kumar Sreeramagiri, Sanjay Braj Mishra
  • Patent number: 8614266
    Abstract: A potting material for an electronic component, an electronic component, and a process for positioning ferrites in an electronic material are disclosed. The potting material is formed by curing a mixture. The mixture includes an epoxy component, an organic amine hardener, a viscosity-controlling agent, and a silica. The potting material has a coefficient of thermal expansion between an inorganic ferrite coefficient of thermal expansion and an organic substrate coefficient of thermal expansion of the electronic component. The potting material includes a rigidity permitting via drilling by one or more of mechanical drilling and laser burning.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: December 24, 2013
    Assignee: Tyco Electronics Services GmbH
    Inventors: Haiying Li, William Lee Harrison
  • Patent number: 8609786
    Abstract: A method of making a thermoplastic composition comprises melt blending a reaction mixture comprising a first polycarbonate comprising repeat units derived from monoaryl monomers (II) and (III) and a diaryl monomer (IV), wherein the sum of the mole percent of the repeat units derived from monomers (II) and (III) is greater than or equal to 30 mole percent, and the mole percent of the repeat units derived from monomer (IV) is 5 to 70 mole percent, each based on the total moles the repeat units derived from monomers (II), (III), and (IV), and the total weight of the repeat units derived from monomers (II), (III), and (IV) is greater than or equal to 90 wt. % of the first polycarbonate; and an additional polycarbonate, comprising 50 to 100 mole percent of repeat units derived from a bisphenol cyclohexane.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: December 17, 2013
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Johannes Martinus Dina Goossens, Hendrik Theodorus van de Grampel, Jan-Pleun Lens, Lina Prada, Sandeep Tripathi, André van Zyl