Patents Examined by Scott B. Geyer
  • Patent number: 10658293
    Abstract: A semiconductor device having a plurality of first wirings (X-direction) which include a first power supply line and a second power supply line, a plurality of third wirings (X-direction) which include a third (fourth) power supply line that is located above the first (second) power supply line and is electrically connected to the first (second) power supply line. The semiconductor device also has a plurality of second wirings (Y-direction) that include a first (second) connection wiring located above the first (second) power supply line and below the third (fourth) power supply line that is electrically connected to the first (second) power supply line and to the third (fourth) power supply line.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: May 19, 2020
    Assignee: SOCIONEXT INC.
    Inventor: Tomoyuki Kirimura
  • Patent number: 10658379
    Abstract: A method for forming a 3D memory device is disclosed. The method comprises: forming an alternating conductive/dielectric stack on a substrate; forming a slit vertically penetrating the alternating conductive/dielectric stack; forming an isolation layer on a sidewall of the slit; forming a first conductive layer covering the isolation layer; performing a plasma treatment followed by a first doping process to the first conductive layer; forming a second conductive layer covering the first conductive and filling the slit; performing a second doping process followed by a rapid thermal crystallization process to the second conductive layer; removing an upper portion of the first conductive layer and the second conductive layer to form a recess in the slit; and forming a third conductive layer in the recess.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: May 19, 2020
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Li Hong Xiao, Zhenyu Lu, Qian Tao, Lan Yao
  • Patent number: 10651281
    Abstract: Structures with altered crystallinity beneath semiconductor devices and methods associated with forming such structures. A semiconductor layer is implanted over a first depth range of an inert gas species to modify the crystal structure of a semiconductor material of the semiconductor layer and form a first modified region. The semiconductor layer is annealed with a first annealing process to convert the semiconductor material within the first modified region to a non-single-crystal layer. The semiconductor layer is also implanted with ions of an element over a second depth range to modify the crystal structure of the semiconductor material of the semiconductor layer and form a second modified region containing a concentration of the element. The semiconductor layer is annealed with a second annealing process to convert the semiconductor material within the second modified region to an insulator layer containing the element.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: May 12, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Siva P. Adusumilli, John J. Ellis-Monaghan, Anthony K. Stamper, Ian McCallum-Cook, Mark Goldstein
  • Patent number: 10647570
    Abstract: A process for fabricating a symmetrical MEMS accelerometer.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: May 12, 2020
    Assignee: Chinese Academy of Sciences Institute of Geology and Geophysics
    Inventors: Lianzhong Yu, Chen Sun, Leiyang Yi
  • Patent number: 10643982
    Abstract: A light emitting device that includes: a plurality of light emitting elements arranged at different locations in a common plane, each light emitting element including: at least one layer of a semiconductor material; a first electrical terminal located at a first location; a second electrical terminal located at a second location; and a third electrical terminal located at a third location; a first electrode layer including one or more electrodes; a second electrode layer including one or more electrodes; a third electrode layer including one or more electrodes; a first electrically insulating layer disposed between the plurality of light emitting elements and also disposed between the first and second electrode layers; and a second electrically insulating layer disposed between the plurality of light emitting elements and also disposed between the second and third electrode layers.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: May 5, 2020
    Assignee: X Development LLC
    Inventors: Martin Friedrich Schubert, Michael Jason Grundmann
  • Patent number: 10644142
    Abstract: A semiconductor device includes a base substrate, a doped region at an upper surface of the base substrate, and a transistor over the upper surface of the base substrate and formed from a plurality of epitaxially-grown semiconductor layers. The doped region includes one or more ion species, and has a lower boundary above a lower surface of the base substrate. The base substrate may be a silicon substrate, and the transistor may be a GaN HEMT formed from a plurality of heteroepitaxial layers that include aluminum nitride and/or aluminum gallium nitride. The doped region may be a diffusion barrier region and/or an enhanced resistivity region. The ion species may be selected from phosphorus, arsenic, antimony, bismuth, argon, helium, nitrogen, and oxygen. When the ion species includes oxygen, the doped region may include a silicon dioxide layer formed from annealing the doped region after introduction of the oxygen.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 5, 2020
    Assignee: NXP USA, Inc.
    Inventors: Yuanzheng Yue, David Cobb Burdeaux, Jenn Hwa Huang, Bruce McRae Green, James Allen Teplik
  • Patent number: 10636771
    Abstract: A light emitting device for a display includes a substrate and first, second, and third LED sub-units, a first transparent electrode between the first and second LED sub-units and in ohmic contact with the first LED sub-unit, a second transparent electrode between the second and third LED sub-units and in ohmic contact with the second LED sub-unit, a third transparent electrode between the second transparent electrode and the third LED sub-unit and in ohmic contact with the third LED sub-unit, at least one current spreader connected to at least one of the first, second, and third LED sub-units, electrode pads disposed on the substrate, and through-hole vias formed through the substrate, in which at least one of the through-hole vias is formed through the substrate and the first and second LED sub-units.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: April 28, 2020
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Chang Yeon Kim, Jong Hyeon Chae, Jong Min Jang, Ho Joon Lee, Seong Gyu Jang
  • Patent number: 10636838
    Abstract: Integrated active-matrix multi-color light emitting pixel arrays based displays and methods of fabricating the integrated displays are provided. An example integrated device includes a backplane device and different color light emitting diodes (LEDs) devices arranged in different height planar layers on the backplane device. The backplane device includes at least one backplane having a number of pixel circuits. Each LED device includes an array of LEDs each operable to emit light with a particular color and conductively coupled to respective pixel circuits in the backplane to form active-matrix LED sub-pixels. The different color LED sub-pixels form an array of active-matrix multi-color display pixels. Plug vias can be arranged in different planar layers to conductively couple upper-level LEDs to respective pixel circuits in respective regions over the backplane device. The plug vias can extend from an upper planar layer into a lower planar layer to fix the two planar layers together.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: April 28, 2020
    Inventor: Shaoher Pan
  • Patent number: 10629493
    Abstract: A method for fabricating a semiconductor structure includes providing a substrate including isolation regions and a device region between adjacent isolation regions; forming a plurality of fin structures, including a first plurality of fin structures on the isolation regions and a second plurality of fin structures on the device region of the substrate; forming an isolation layer, having a top surface lower than top surfaces of the fin structures, on the substrate between adjacent fin structures; etching the first plurality of fin structures on the isolation regions after forming the isolation layer; and forming a gate structure across the second plurality of fin structures on the device region after etching the first plurality of fin structures formed on the isolation regions. The gate structure covers a portion of sidewall and top surfaces of each fin structure of the second plurality of fin structures on the device region.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: April 21, 2020
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Yong Li
  • Patent number: 10629680
    Abstract: Provided are embodiments of a method for forming active regions of a semiconductor device. Embodiments include forming a nanosheet stack on a substrate, forming the nanosheet stack includes forming a sacrificial nanosheet layer on the substrate, and forming a nanosheet layer on the sacrificial nanosheet layer. Embodiments also include forming an etch stop layer on the nanosheet stack, forming a mandrel layer on the etch stop layer, removing portions of the mandrel layer to form a mandrel on the etch stop layer, and forming sidewalls adjacent to sidewalls of the mandrel. The embodiments include depositing a fill layer on exposed portions of the etch stop layer, removing the sidewalls and removing exposed portions of the etch stop layer and the nanosheet stack to expose portions of the substrate.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: April 21, 2020
    Assignee: Tessera, Inc.
    Inventors: Effendi Leobandung, Tenko Yamashita
  • Patent number: 10629689
    Abstract: A method for manufacturing a display panel comprising light emitting device including micro LEDs includes providing multiple donor wafers having a surface region and forming an epitaxial material overlying the surface region. The epitaxial material includes an n-type region, an active region comprising at least one light emitting layer overlying the n-type region, and a p-type region overlying the active layer region. The multiple donor wafers are configured to emit different color emissions. The epitaxial material on the multiple donor wafers is patterned to form a plurality of dice, characterized by a first pitch between a pair of dice less than a design width. At least some of the dice are selectively transferred from the multiple donor wafers to a common carrier wafer such that the carrier wafer is configured with different color emitting LEDs. The different color LEDs could comprise red-green-blue LEDs to form a RGB display panel.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: April 21, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Melvin McLaurin, Alexander Sztein, Po Shan Hsu
  • Patent number: 10622376
    Abstract: According to an embodiment, a semiconductor memory device comprises: a stacked body that includes a plurality of control gate electrodes stacked above a substrate; a memory columnar body that extends in a first direction above the substrate and configures a memory string along with the stacked body; and a source contact that extends in the first direction and is electrically connected to one end of the memory string. Moreover, this source contact is adjacent to the stacked body via a spacer insulating layer. Furthermore, a spacer protective layer including a nitride or a metal oxide is provided between these source contact and spacer insulating layer.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: April 14, 2020
    Assignee: Toshiba Memory Corporation
    Inventor: Takeo Mori
  • Patent number: 10622393
    Abstract: The method is provided for fabricating an optical metasurface. The method may include depositing a conductive layer over a holographic region of a wafer and depositing a dielectric layer over the conducting layer. The method may also include patterning a hard mask on the dielectric layer. The method may further include etching the dielectric layer to form a plurality of dielectric pillars with a plurality of nano-scale gaps between the pillars.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: April 14, 2020
    Assignee: Elwha LLC
    Inventors: Gleb M. Akselrod, Erik E. Josberger, Mark C. Weidman
  • Patent number: 10615122
    Abstract: A semiconductor integrated circuit device having a power supply strap formed in a layer above a power supply line which supplies power to standard cells, a switch cell provided for the power supply line, the switch cell being capable of switching between electrical connection and disconnection between the power supply line and the power supply strap, and a sub-power supply strap connected to at least two power supply lines including the power supply line provided with the switch cell.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: April 7, 2020
    Assignee: Socionext Inc.
    Inventor: Keisuke Kishishita
  • Patent number: 10615082
    Abstract: Forming a PFET work function metal layer on a p-type field effect transistor (PFET) fin in a PFET region and on an n-type field effect transistor (NFET) fin in an NFET region, removing a portion of the PFET work function metal layer between the PFET fin and the NFET fin, thinning the PFET work function metal layer, patterning an organic planarization layer on the PFET work function metal layer, where the organic planarization layer covers the PFET region and partially covers the NFET region, removing the PFET work function metal layer in the NFET region, by etching isotropically selective to the organic planarization layer and an insulator in the NFET region, removing the organic planarization layer, and conformally forming an NFET work function metal layer on the semiconductor structure.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Ruqiang Bao, Kangguo Cheng, Hemanth Jagannathan, Choonghyun Lee, Junli Wang
  • Patent number: 10607841
    Abstract: Methods for forming silicide films are disclosed. Methods of selectively depositing metal-containing films on silicon surfaces which are further processed to form silicide films are disclosed. Specific embodiments of the disclosure relate to the formation of silicide films on FinFET structures without the formation of a metal layer on the dielectric.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: March 31, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Swaminathan Srinivasan, Abhijit Basu Mallick, Nicolas Breil
  • Patent number: 10607847
    Abstract: A method of forming a three-dimensional transistor device. The method may include providing a fin array on a substrate, the fin array comprising a plurality of fin structures, formed from a monocrystalline semiconductor, and disposed subjacent to a hard mask layer. The method may include directing angled ions at the fin array, wherein the angled ions form a non-zero angle of incidence with respect to a perpendicular to a plane of the substrate. The angled ions may etch the plurality of fin structures to form a stack of isolated nanowires, within a given fin structure.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: March 31, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Min Gyu Sung, Sony Varghese, Anthony Renau, Morgan Evans, Joseph C. Olson
  • Patent number: 10600881
    Abstract: The present disclosure relates to a tunneling field-effect transistor and a fabrication method. One example transistor includes a semiconductor substrate, a semiconductor nanosheet, a source region and a drain region, a dielectric layer, and a gate metal layer. The semiconductor nanosheet is vertically disposed on the semiconductor substrate. The source region and the drain region are connected using a channel. The drain region, the channel, and the source region are disposed on the semiconductor nanosheet in turn. The drain region is in contact with the semiconductor substrate. The source region is located at an end, of the semiconductor nanosheet, far away from the semiconductor substrate. The dielectric layer comprises at least a gate dielectric layer, is disposed on a surface of the semiconductor nanosheet, and surrounds the channel. The gate metal layer is disposed on a surface of the gate dielectric layer and surrounds the gate dielectric layer.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: March 24, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xichao Yang, Chen-Xiong Zhang
  • Patent number: 10591763
    Abstract: Provided is a display device having a flexible substrate including an active region and a wiring region. The active region possesses a plurality of pixels each including a display element. The wiring region has a plurality of terminals, and a plurality of wirings extends from the active region to the plurality of terminals. An insulating film included in the active region and extending from the active region has a sidewall between an edge of the flexible substrate and the wiring adjacent to the edge in the wiring region. The sidewall has a curved portion on a plane in which the plurality of wirings is arranged, and a distance between the edge and the curved portion is curvedly varied.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: March 17, 2020
    Assignee: Japan Display Inc.
    Inventor: Naoki Tokuda
  • Patent number: 10586753
    Abstract: An integrated circuit (IC) die (100) is disclosed having a major surface delimited by at least one edge (102) of the IC die, said major surface carrying a plurality of electrically conductive contact plates (130) extending from said major surface beyond the at least one edge such that each contact plate includes an exposed contact surface portion (132) delimited by the at least one edge for mating with an electrically conductive further contact surface portion (230) on at least one further edge (220) of a body (200), said at least one further edge delimiting a cavity for receiving the IC die. An ultrasound probe including such an IC die and a method of providing such an IC die with contacts are also disclosed.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: March 10, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Egbertus Reinier Jacobs, Johannes Wilhelmus Weekamp, Niels Cornelis Wilhelmus Johannes Rijkers