Patents Examined by Shamim Ahmed
  • Patent number: 11939672
    Abstract: A nanoscale plate structure includes base plates and rib plates with nanoscale thickness and macroscopic lateral dimensions. The base plate resides in the first plane, the ribs can reside out-of-plane and form at least one strengthening rib, and additional base plates can reside in planes parallel to the first plane. The strengthening rib can be patterned such that there is no straight line path extending through a lateral dimension of the plate structure that does not intersect the at least one base plate and the at least one strengthening rib. The plates and ribs used in the structure have a thickness between about 1 nm and about 100 nm. The plate structures can be fabricated using a conformal deposition method including atomic layer deposition.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: March 26, 2024
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Igor Bargatin, Keivan Davami
  • Patent number: 11938511
    Abstract: A coating method includes supplying a film forming liquid onto a center of a front surface of a substrate from a nozzle in a state that a distance between the front surface and the nozzle is maintained at a coating distance; rotating the substrate at a first rotation speed in a period during which the film forming liquid is supplied onto the front surface, to allow the film forming liquid to be diffused toward an edge of the substrate from an outer periphery of the nozzle; and rotating the substrate at a second rotation speed after the supplying of the film forming liquid is stopped, to allow the film forming liquid to be further diffused. The coating distance is set to allow the film forming liquid to be kept between the nozzle and the front surface when a discharge of the film forming liquid is stopped.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: March 26, 2024
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Masatoshi Kawakita, Yusaku Hashimoto, Kosuke Yoshihara
  • Patent number: 11931774
    Abstract: Disclosed is a method for treating wood veneer, including the steps of providing at least one sheet of wood veneer; coating at least one side of the sheet of wood veneer with an aqueous coating composition including nanocellulose to obtain a coated sheet of wood veneer; and drying the coated sheet using compression pressure and heat. Also disclosed is a coated wood veneer including a sheet of wood veneer and a coating including nanocellulose arranged on at least one surface of the sheet.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: March 19, 2024
    Assignees: TEKNOLOGIAN TUTKIMUSKESKUS VTT OY, AALTO UNIVERSITY FOUNDATION SR
    Inventors: Jaakko Pere, Vesa Kunnari, Matti Kairi, Pekka Ahtila
  • Patent number: 11926113
    Abstract: An optical element and a method for manufacturing the optical element are described. The optical element includes a transparent substrate, an optical layer, and an adhesive layer. The optical layer is located on a surface of the transparent substrate. The optical layer has a first surface and a second surface, which are opposite to each other. The first surface is set with various diffracting optical structures. A refractive index of the optical layer is equal to or greater than 1.4. The adhesive layer is sandwiched between the surface of the transparent substrate and the second surface of the optical layer.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: March 12, 2024
    Assignee: HIMAX TECHNOLOGIES LIMITED
    Inventors: Han Yi Kuo, Shu-Hao Hsu, Yin Tung Lu
  • Patent number: 11926523
    Abstract: Embodiments of the disclosure provide methods for microfabricating an omni-view peripheral scanning system. One exemplary method may include separately fabricating a reflector and a scanning MEMS mirror, and then bonding the microfabricated reflector with the scanning MEMS mirror to form the omni-view peripheral scanning system. The microfabricated reflector may include a cone-shaped bottom portion, and a via hole across the cone-shaped bottom portion. The microfabricated scanning MEMS mirror may include a MEMS actuation platform and a scanning mirror supported by the MEMS actuation platform. The scanning MEMS mirror may face the cone-shaped bottom portion of the reflector when forming the omni-view peripheral scanning system.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: March 12, 2024
    Assignee: BEIJING VOYAGER TECHNOLOGY CO., LTD.
    Inventors: Youmin Wang, Yue Lu
  • Patent number: 11915952
    Abstract: The present application provides a temperature control method, an apparatus, an electronic device and a storage medium for an etching workbench. A real-time temperature of an etching workbench and a real-time temperature of a temperature control fluid are acquired firstly; then, a temperature control instruction is determined according to the real-time temperature of the etching workbench, the real-time temperature of the temperature control fluid and a limit temperature; and finally, in response to the temperature control instruction, a target operating temperature of the etching workbench is stabilized within a preset range by a circulating temperature control fluid loop.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: February 27, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: Yong Fang, Chien Chung Wang
  • Patent number: 11913119
    Abstract: A manufacturing method is provided during which a preform component for a turbine engine is provided. The preform component includes a substrate and a locating feature at an exterior surface of the substrate. An outer coating is applied over the substrate. The outer coating covers the locating feature. At least a portion of the preform component and the outer coating are scanned with an imaging system to provide scan data indicative of a location of the locating feature. A cooling aperture is formed in the substrate and the outer coating based on the scan data.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: February 27, 2024
    Assignee: RTX CORPORATION
    Inventors: Brian Craig, James M. Koonankeil, Brian T. Hazel, Paul E. Denney, Dominic J. Mongillo
  • Patent number: 11915926
    Abstract: A porous thin film includes a framework that includes a plurality of pores. The pores extend from an opening located at an upper surface of the framework to a bottom surface contained in the framework. A pore-coating film is formed on sidewalls and the bottom surface of the pores.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: February 27, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Leonidas Ernesto Ocola, Eric A. Joseph, Hiroyuki Miyazoe, Takashi Ando, Damon Brooks Farmer
  • Patent number: 11905592
    Abstract: In various aspects of the disclosure, a method of operating a process group that performs at least a first reactive coating process and a second reactive coating process may comprise: coating of a substrate by means of the first reactive coating process and by means of the second reactive coating process; closed-loop control of the process group by means of a first manipulated variable of the first coating process and a second manipulated variable of the second coating process and using a correction element; wherein the correction element relates the first manipulated variable and the second manipulated variable to one another in such a way that their control values are different from one another.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: February 20, 2024
    Inventors: Ralf Biedermann, Bernd Teichert, Thomas Meyer, Torsten Dsaak
  • Patent number: 11905598
    Abstract: An object is to coat a target position on a substrate with a dense film. In order to achieve the object, while a substrate on which a base containing a coating material is formed is transported, an auxiliary agent is applied to the substrate, and then a main agent containing a coating material is applied to the substrate to react the main agent with the auxiliary agent, so that a portion on the substrate where the base is formed is coated with the coating material.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: February 20, 2024
    Assignee: FUJIFILM Corporation
    Inventors: Eijiro Iwase, Keio Okano, Katsuyuki Nukui
  • Patent number: 11906763
    Abstract: A method of fabricating a blazed diffraction grating comprises providing a master template substrate and imprinting periodically repeating lines on the master template substrate in a plurality of master template regions. The periodically repeating lines in different ones of the master template regions extend in different directions. The method additionally comprises using at least one of the master template regions as a master template to imprint at least one blazed diffraction grating pattern on a grating substrate.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: February 20, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Shuqiang Yang, Kang Luo, Vikramjit Singh, Frank Y. Xu
  • Patent number: 11901192
    Abstract: To provide an etching processing method and an etching processing apparatus which allow an aluminum oxide film to be etched with high accuracy and with a high selectivity to each of a silicon oxide film and a silicon nitride film, the etching processing method includes the step of placing, in a processing chamber, a wafer having the aluminum oxide film disposed on an upper surface thereof, maintaining the wafer at a temperature of ?20° C. or less, and supplying vapor of hydrogen fluoride from a plurality of through holes in a plate-like member disposed above the upper surface of the wafer with a predetermined gap being provided therebetween only for a predetermined period to etch the aluminum oxide film.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: February 13, 2024
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Hiroto Otake, Takashi Hattori
  • Patent number: 11892676
    Abstract: Embodiments described herein provide for methods of forming angled optical device structures. The methods described herein utilize etching a mandrel material with an etch chemistry that is selective to the hardmask, i.e., the mandrel material is etched at a higher rate than the hardmask. Therefore, mandrel trenches are formed in the mandrel material. Device material of the angled optical device structures to be formed is deposited on the plurality of angled mandrels. An angled etch process is performed on portions of the device material such that the angled optical device structures are formed.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: February 6, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Rutger Meyer Timmerman Thijssen, Ludovic Godet
  • Patent number: 11886122
    Abstract: A method comprising providing a carbonaceous material, the substrate having a first thermal conductivity. The method further comprises depositing a first masking layer having a second thermal conductivity on at least a portion of the substrate, a ratio of the second thermal conductivity to the first thermal conductivity being less than or equal to 1:30. The method further comprises depositing a second masking layer on the first masking layer to form an etch mask, and etching an exposed portion of the substrate.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: January 30, 2024
    Assignees: FRAUNHOFER USA, INC., THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Jung-Hun Seo, Yixiong Zheng, Matthias Muehle
  • Patent number: 11885013
    Abstract: Methods and systems for depositing vanadium nitride layers onto a surface of the substrate and structures and devices formed using the methods are disclosed. An exemplary method includes using a cyclical deposition process, depositing a vanadium nitride layer onto a surface of the substrate. The cyclical deposition process can include providing a vanadium halide precursor to the reaction chamber and separately providing a nitrogen reactant to the reaction chamber. The cyclical deposition process may desirably be a thermal cyclical deposition process.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: January 30, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Giuseppe Alessio Verni, Qi Xie, Henri Jussila, Charles Dezelah, Jiyeon Kim, Eric James Shero, Paul Ma
  • Patent number: 11880165
    Abstract: Disclosed is a method including the following steps: a) providing a substrate including a first silicon layer, a second silicon layer and an intermediate silicon oxide layer therebetween; b) etching the first silicon layer in order to form the timepiece components therein; c) releasing from the substrate a wafer formed by at least all or part of the etched, first silicon layer and including the timepiece components; d) thermally oxidizing and then deoxidizing the timepiece components; e) forming by thermal oxidation or deposition a silicon oxide layer on the timepiece components; f) detaching the timepiece components from the wafer.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: January 23, 2024
    Assignee: PATEK PHILIPPE SA GENEVE
    Inventor: Sylvain Jeanneret
  • Patent number: 11881400
    Abstract: Provided is a silicon-containing layer forming composition for forming a silicon-containing layer which exhibits an anti-reflective function during exposure in a multilayer resist process and, during dry etching, shows a high etching rate against a plasma of fluorine-based gas and a low etching rate against a plasma of oxygen-based gas. The silicon-containing layer forming composition includes a polysiloxane compound having a structural unit of the formula: [(R1)bR2mSiOn/2] and a solvent. In the formula, R1 is a group represented by the following formula: (where a is an integer of 1 to 5; and a wavy line means that a line which the wavy line intersects is a bond); R2 is each independently a hydrogen atom, a C1-C3 alkyl group, a phenyl group, a hydroxy group, a C1-C3 alkoxy group or a C1-C3 fluoroalkyl group; b is an integer of 1 to 3; m is an integer of 0 to 2; n is an integer of 1 to 3; and a relationship of b+m+n=4 is satisfied.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: January 23, 2024
    Assignee: Central Glass Company, Limited
    Inventors: Junya Nakatsuji, Kazuhiro Yamanaka
  • Patent number: 11879688
    Abstract: A window assembly heat transfer system is disclosed in which a window member has a selected transparency to monitored or sensed electromagnetic wavelengths. One or more passages are provided in the window member for flowing a single-phase or two-phase heat transfer fluid. A mechanism allows either evaporation or condensation of the fluid and/or balancing of a flow of the fluid within the passages. In one embodiment, the window assembly can be made by producing passages in a top surface of a first single plate, optionally producing passages in a bottom surface of a second single plate and bonding the top surface of the first plate to a bottom surface of a second single plate to form the window member with the passage or passages. In another embodiment, the window assembly can be made by providing a core around which the window member material is grown and thereafter removing the core to produce the passage or passages.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: January 23, 2024
    Assignee: Mainstream Engineering Corporation
    Inventors: Brian P. Tucker, Joshua D. Sole, Justin J. Hill, Robert P. Scaringe
  • Patent number: 11878323
    Abstract: A powder-coating process of a brake caliper has in sequence the steps of: (a) preparing the brake caliper; (b) applying masking elements to at least one seat and/or duct of said brake caliper; (c) distributing the coating powder on at least one portion of said brake caliper; (d) removing the at least one masking element by automated de-masking means; (e) curing inside a curing oven.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: January 23, 2024
    Assignee: Brembo S.p.A.
    Inventors: Gianluigi Roncalli, Alessio Garghentini
  • Patent number: 11878489
    Abstract: A method for manufacturing a sandwich panel for a vehicle includes: etching a sheet, which etches one surface of a metal sheet; pressing the sheet, which forms a pattern of a specific shape on the one surface of the metal sheet; laminating a pair of the metal sheets; and performing injection-molding by injecting a plastic resin into the laminated pair of the metal sheets. The method may improve the bonding performance of the sandwich panel, thereby improving the degree of freedom of shape due to the press-molding.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: January 23, 2024
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, IL KWANG POLYMER. CO., LTD
    Inventors: Jae-Gi Sim, Hyo-Moon Joo, Yong-Wan Jo