Patents Examined by Stanley S. Silverman
  • Patent number: 6986878
    Abstract: A process for producing potassium sulfate from potash and sodium sulfate, which involves providing a source of sodium sulfate and passing the sodium sulfate through cationic exchanger. Eluted potassium sulfate containing sodium sulfate is reacted with potash to form further potassium sulfate.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: January 17, 2006
    Assignee: Dirdal Rand Technologies
    Inventor: Gary Derdall
  • Patent number: 6986877
    Abstract: A carbon nano-fiber, particularly twisted carbon nano-fiber such as a carbon nano-coil, carbon nano-twist, carbon nano-rope is produced by means of a catalyst CVD method using carbon-containing gas as a raw material and a catalyst comprising one or plural components selected from the group consisting of Cr, Mn, Fe, Co, Ni and oxide thereof and one or plural components selected from the group consisting of Cu, Al, Si, Ti, V, Nb, Mo, Hf, Ta, W and oxide thereof is used.
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: January 17, 2006
    Assignee: Futaba Corporation
    Inventors: Hirofumi Takikawa, Shigeo Itoh
  • Patent number: 6984358
    Abstract: A method for producing diffusion bonds between components formed of tungsten heavy alloy (WHA) uses aid material to accelerate diffusion across the joint surfaces. The aid material consists of an alloy of palladium (Pd) with one or more of the secondary elements of nickel (Ni), iron (Fe), or cobalt (Co). The secondary elements are selected to correspond to the secondary elements present in the components. The diffusion bonding is carried out by placing diffusion aid material between the joint surfaces of adjacent components, applying a pressure across the joint surfaces, and processing the assembly through a thermal profile. Structures of WHA with complex shapes, interior volumes and/or large sizes can be formed. The joint properties are equal to or superior to those of the parent material of the components.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: January 10, 2006
    Assignee: Lockheed Martin Corporation
    Inventor: William R. Spencer
  • Patent number: 6984767
    Abstract: The invention consists of a method for treating polychlorinated biphenyl (PCB) contaminated media by: a) combining the media with a fluid containing one or more liquid hydrocarbons to form a media/fluid mixture; b) sonicating the mixture at audio frequency to extract PCB from the media into the fluid; and c) treating the fluid with sodium-containing alkali metal. The method may include additional steps to reduce the size of the media. Alternatively, the fluid can be decanted from the media after sonication and treated separately with sodium-containing alkali metal.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: January 10, 2006
    Assignee: Sonic Environmental Solutions Inc.
    Inventors: Lorrie Hunt, Jim McKinley, Rod McElroy
  • Patent number: 6984372
    Abstract: This invention relates to a sulfur tolerant, dynamic, compact, lightweight fuel process and system that is capable of converting sulfur bearing carbonaceous fuels to hydrogen rich gases suitable for fuel cells or chemical processing applications. The process and system is based on the AHR and WGS reactions, followed by cleanup of byproduct sulfur-containing gases and carbon oxides that would otherwise poison the fuel cell electrocatalyst. Advantageously, this is accomplished via an ASMS and a methanator or an AWMR. The process and system preferably uses a special sulfur tolerant catalysts and hardware designs that enable the conversion in an energy efficient manner while maintaining desirable performance characteristics such as rapid start-stop and fast response to load change capabilities.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: January 10, 2006
    Assignees: Unitel Technologies, Inc., University of Kentucky Research Foundation
    Inventors: Surjit Randhava, W. S. Winston Ho, Richard L. Kao, Elias H. Camara
  • Patent number: 6984768
    Abstract: A method for destroying halocarbons. Halocarbon materials are reacted in a dehalogenation process wherein they are combined with a solvent in the presence of a catalyst. A hydrogen-containing solvent is preferred which functions as both a solvating agent and hydrogen donor. To augment the hydrogen donation capacity of the solvent if needed (or when non-hydrogen-containing solvents are used), a supplemental hydrogen donor composition may be employed. In operation, at least one of the temperature and pressure of the solvent is maintained near, at, or above a critical level. For example, the solvent may be in (1) a supercritical state; (2) a state where one of the temperature or pressure thereof is at or above critical; or (3) a state where at least one of the temperature and pressure thereof is near-critical. This system provides numerous benefits including improved reaction rates, efficiency, and versatility.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: January 10, 2006
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Daniel M. Ginosar, Robert V. Fox, Stuart K. Janikowski
  • Patent number: 6984769
    Abstract: A reactive coating composition and method for treating a surface including heavy metals by applying the reactive coating composition to the surface. The surface can be, for example, a paint layer containing heavy metals. The reactive coating composition includes a stabilizing agent to stabilize the heavy metal and a permeability enhancing agent to increase the permeability of the paint layer, facilitating the reaction of the heavy metal with the stabilizing agent. The structure including the treated paint layer can be left in place or can be disposed in a non-hazardous landfill.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: January 10, 2006
    Assignee: MT2, LLC
    Inventors: James Barthel, Mark A. Peters
  • Patent number: 6982235
    Abstract: A process for regenerating a solid catalyst which has been used for producing propylene oxide through an epoxidation reaction of propylene with an organic peroxide in a reactor packed with the solid catalyst, which comprises allowing a liquid to flow through the catalyst packed in the reactor at a temperature not lower than the maximum reaction temperature of the epoxidation reaction. According to the present invention, a catalyst can be regenerated with extremely high efficiency without taking the catalyst to be regenerated out of the reactor.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: January 3, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Junpei Tsuji, Toshikazu Ohmae
  • Patent number: 6979505
    Abstract: Method and apparatus are provided for removing contaminants from a hydrogen processor feed stream, as in a fuel cell power plant (110). Inlet oxidant (38), typically air, required by a catalytic hydrogen processor (34) in a fuel processor (14) for a fuel cell stack assembly (12) in the power plant (110), may contain contaminants such as SO2 and the like. A cleansing arrangement, which includes an accumulator/degasifier (142, 46) acting as a scrubber, and possibly also a water transfer device (118), receives the inlet oxidant and provides the desired cleansing of contaminants. Water in the water transfer device and in the accumulator/degasifier serves to dissolve the water-soluble contaminants and cleanse them from the oxidant stream. The cleansed oxidant stream (138?) is then delivered to the hydrogen processor and to the fuel cell assembly, with minimal inclusion of detrimental contaminants such as sulfur.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: December 27, 2005
    Assignee: UTC Fuel Cells, LLC
    Inventors: Albert P. Grasso, Bryan F. Dufner, Jay C. Files, John L. Preston, Jr.
  • Patent number: 6979432
    Abstract: A process for the production of hydrogen cyanide is provided, wherein hydrogen cyanide is synthesized by reacting methane or methane-containing natural gas, ammonia and oxygen-enriched air or oxygen in the presence of a catalyst comprising platinum or a platinum alloy; wherein the reactants are present in the following molar ratios [ O 2 ] [ O 2 + N 2 ] = 0.25 ? ? to ? ? 1.0 ; [ CH 4 ] [ NH 3 ] = 0.95 ? ? to ? ? 1.05 ; and where a molar ratio of ammonia to the sum of oxygen and nitrogen obeys the following relationship: Y=m·X?a, wherein Y = [ NH 3 ] [ O 2 + N 2 ] X = [ O 2 ] [ O 2 + N 2 ] m=1.25 to 1.40; and a=0.05 to 0.14.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: December 27, 2005
    Assignee: Roehm GmbH & Co. KG
    Inventors: Thomas Schaefer, Hermann Siegert
  • Patent number: 6979758
    Abstract: A method for neutralization of the explosive content of mines and UXO by essentially completely consuming the explosive by combustion or decomposition before any explosion occurs. A charge of a compound that reacts with an extremely high heat-release rate is ignited on or near the casing of the device to be neutralized. The intense exothermic reaction generates high temperature combustion products that will disrupt the casing, thus leading to combustion or decomposition of the explosive. The holes melted in the mine casing enable ignition of a large area of the explosive charge and provide easy access for atmospheric air to support active burnout of the explosive. The apparatus comprises the compound that reacts with a high heat release rate, an ignition source, and a container for the assembly.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: December 27, 2005
    Assignee: Science Applications International Corporation
    Inventors: Shmuel Eidelman, Samuel Goroshin
  • Patent number: 6979431
    Abstract: A method for labelling a sulfide compound with technetium or rhenium, comprising the reaction of a disulfide compound with pertechnetate or perrhenate in the presence of borohydride exchange resin to obtain a complex of technetium or rhenium with the sulfide compound. The method can directly label disulfide compounds with technetium or rhenium, can skip the synthetic step of thiol-protected S-precursor, and is useful for high value-added radiopharmaceuticals.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: December 27, 2005
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Kyung Bae Park, Sang Hyun Park, Hui Jeong Gwon, Sun Ju Choi, Byung Chul Shin, Young Don Hong, Sang Mu Choi, Woong Woo Park, Kwang Hee Han, Beom Su Jang
  • Patent number: 6974564
    Abstract: The present invention relates to a method for the removal of mercury from a gas stream. The method is characterized in that at a temperature above 170° C. the gas stream is contacted with a sorbent that as the active component is comprised of a mixture of substantially silica-alumina compounds and/or calcium compounds. According to a preference, the sorbent is kaolin, that may or may not be in the dehydrated form of meta-kaolin and is optionally obtained by thermal conversion of a material chosen from paper waste or residue from the paper industry. By this method it is possible to remove mercury at temperatures higher than room temperature. The invention also relates to a method for the removal of mercury from a gas stream, wherein the gas stream is contacted with a sorbent at a temperature above 50° C., which sorbent comprises as active substance a mixture of substantially silica-alumina compounds and/or calcium compounds, as well as with an oxidator.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: December 13, 2005
    Assignee: CDEM Holland B.V.
    Inventors: Joseph Jan Biermann, Nicolaas Voogt
  • Patent number: 6973154
    Abstract: In a chemical decontamination method of chemically decontaminating radioactive nuclides from a metallic material, oxalic acid and hydrazine are injected as a reductive decontaminating agent into water that is in contact with the metallic material. Injection of the hydrazine is stopped after a cation resin arranged in a circulation line connected to the metallic material breaks, and at least the oxalic acid and the hydrazine in the reductive decontaminating agent are decomposed using a decomposing catalyst.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: December 6, 2005
    Assignees: Hitachi, Ltd., Kurita Engineering Co., Ltd.
    Inventors: Makoto Nagase, Naohito Uetake, Kazushige Ishida, Fumito Nakamura, Kazumi Anazawa, Tadashi Tamagawa, Hiroo Yoshikawa
  • Patent number: 6972120
    Abstract: A method of removing metallic mercury and ionic mercury from flue gases, especially of a power plant, is provided. A gas that contains sulfur dioxide, or other adequate amounts of sulfur in the form of H2S or COS, and a gas that contains hydrogen, are conveyed to a catalyzer for producing a gas that contains elemental sulfur and hydrogen sulfide. This gas is conveyed to flue gas upstream of a separator, wherein mercury in the flue gas reacts with the sulfur and ionic sulfur in the gas and is separated out in the separator.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: December 6, 2005
    Assignee: FISIA Deutschland GmbH
    Inventors: Reinhard Holste, Wolfgang Fey
  • Patent number: 6969562
    Abstract: A hydrogen-containing gas suitable for use in a fuel cell, especially in a proton exchange membrane fuel cell, is produced from a digestion gas (b) yielded in methane fermentation of organic matter (a), and is then supplied to the fuel cell to generate electricity. A fuel cell power generation method comprises a methane fermentation step (A) for subjecting organic matter to methane fermentation, a pretreatment step (B) for pretreating digestion gas yielded in the methane fermentation step, a hydrogen production step (C) for producing hydrogen-containing gas (c) from the gas which has been pretreated in the pretreatment step, and a fuel cell power generation step (D) for supplying the hydrogen-containing gas produced in the hydrogen production step to a fuel cell to generate electricity.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: November 29, 2005
    Assignee: Ebara Corporation
    Inventors: Qingquan Su, Kazuo Kinoshita, Yasuo Tanaka, Tomohiro Togo
  • Patent number: 6969503
    Abstract: A carbon fiber has a coaxial stacking morphology of truncated conical tubular graphene layers, wherein each of the graphene layers includes a hexagonal carbon layer and has a large ring end at one end and a small ring end at the other end in the axial direction. When the carbon fiber is subjected to a heat treatment in a non-oxidizing atmosphere, the large ring ends of each two of the hexagonal carbon layers are linked by layer link sections in at least one of groups of the hexagonal carbon layers arranged in an axial direction, and an outer surface is closed to have a multi-semiring structure in cross section. When the carbon fiber is then subjected to a heat treatment in an oxidizing atmosphere, the layer link sections are released, whereby the edges of the hexagonal carbon layers are exposed at the large ring ends in a regularly arranged manner.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: November 29, 2005
    Assignee: GSI Creos Corporation
    Inventors: Takashi Yanagisawa, Shunji Higaki
  • Patent number: 6969505
    Abstract: This invention relates to a process for conducting an equilibrium limited chemical reaction in a single stage process channel. A process for conducting a water shift reaction is disclosed. A multichannel reactor with cross flow heat exchange is disclosed.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: November 29, 2005
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Wayne W. Simmons, Kai Tod Paul Jarosch, Terry Mazanec, Eric Daymo, Ying Peng, Jennifer Lynne Marco
  • Patent number: 6969506
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Superior results were achieved for combustion chambers which contained a gap for free flow through the chamber. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: November 29, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Tonkovich, Gary L. Roberts, Steven T. Perry, Sean P. Fitzgerald
  • Patent number: 6967014
    Abstract: The carbonization of cellulose fiber fabric comprises an initial stage of heat treatment up to 250° C. to 350° C., with a relatively high mean temperature rise speed of 10° C./min to 60° C./min, an intermediate stage up to 350° C. to 500° C. with a lower mean temperature rise speed of 2° C./min to 10° C./min, and a final stage up to 500° C. to 750° C. with a mean temperature rise speed that is again raised to 5° C./min to 40° C./min.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: November 22, 2005
    Assignee: Snecma Moteurs
    Inventors: Pierre Olry, Mark Kazakov, Sylvie Loison, Marina Marakhovskaya