Patents Examined by Stephanie Duclair
  • Patent number: 8623231
    Abstract: A method for etching an ultra thin film is provided which includes providing a substrate having the ultra thin film formed thereon, patterning a photosensitive layer formed over the ultra thin film, etching the ultra thin film using the patterned photosensitive layer, and removing the patterned photosensitive layer. The etching process includes utilizing an etch material with a diffusion resistant carrier such that the etch material is prevented from diffusing to a region underneath the photosensitive layer and removing portions of the ultra thin film underneath the photosensitive layer.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: January 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: George Liu, Kuei Shun Chen, Vencent Chang, Chih-Yang Yeh
  • Patent number: 8613860
    Abstract: A fabrication method produces a mechanically patterned layer of group III-nitride. The method includes providing a crystalline substrate and forming a first layer of a first group III-nitride on a planar surface of the substrate. The first layer has a single polarity and also has a pattern of holes or trenches that expose a portion of the substrate. The method includes then, epitaxially growing a second layer of a second group III-nitride over the first layer and the exposed portion of substrate. The first and second group III-nitrides have different alloy compositions. The method also includes subjecting the second layer to an aqueous solution of base to mechanically pattern the second layer.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: December 24, 2013
    Assignee: Alcatel Lucent
    Inventors: Aref Chowdhury, Hock Ng, Richart Elliott Slusher
  • Patent number: 8603348
    Abstract: A method of removing an alumina layer around a main pole layer during perpendicular magnetic recording head fabrication is disclosed. The alumina etch sequence includes immersing a substrate in a series of aqueous solutions purged with an inert gas to remove oxygen thereby avoiding corrosion of the main pole. Initially, the substrate is soaked and heated in deionized (DI) water. Once heated, the substrate is immersed in an etching bath at about 80° C. and pH 10.5. Bath chemistry is preferably based on Na2CO3 and NaHCO3, and N2 purging improves etch uniformity and reduces residue. Thereafter, the substrate is rinsed in a second DI water bath between room temperature and 80° C., and finally subjected to a quick dump rinse before drying. Inert gas, preferably N2, may be introduced into the aqueous solutions through a purge board having a plurality of openings and positioned proximate to the bottom of a bath container.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: December 10, 2013
    Assignee: Headway Technologies, Inc.
    Inventors: Chao-Peng Cheng, Chih-I Yang, Jas Chudasama, William Stokes, Chien-Li Lin, David Wagner
  • Patent number: 8597530
    Abstract: A method of forming a semiconductor device comprises forming a mask pattern over an etch target layer, forming an ion implantation region in the mask pattern through an ion implantation process, and forming an ion non-implantation region within the mask pattern, removing the ion implantation region on a top surface of the ion non-implantation region, removing the ion non-implantation region, and patterning the etch target layer by using spacers that comprise the ion implantation region as an etch mask.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: December 3, 2013
    Assignee: SK hynix Inc.
    Inventor: Min Sub Lee
  • Patent number: 8580656
    Abstract: Adherence of contaminant residues or particles is suppressed, corrosion of exposed surfaces is substantially reduced or eliminated during the process of dicing a wafer by sawing. A fluoride-free aqueous composition comprising a dicarboxylic acid and/or salt thereof; a hydroxycarboxylic acid and/or salt thereof or amine group containing acid, a surfactant and deionized water is employed.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: November 12, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Terence Quintin Collier, Charles A. Lhota, David Barry Rennie, Rajkumar Ramamurthi, Madhukar Bhaskara Rao, Dnyanesh Chandrakant Tamboli
  • Patent number: 8569174
    Abstract: Methods of determining a polishing endpoint are described using spectra obtained during a polishing sequence. In particular, techniques for using only desired spectra, faster searching methods and more robust rate determination methods are described.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: October 29, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Harry Q. Lee, Boguslaw A. Swedek, Dominic J. Benvegnu, Jeffrey Drue David
  • Patent number: 8563436
    Abstract: A method for chemical mechanical polishing of a semiconductor wafer containing a nonferrous metal is provided, comprising: providing a chemical mechanical polishing composition comprising 1 to 25 wt % of an oxidizer; 0.01 to 15 wt % of an inhibitor for the nonferrous metal; 0.005 to 5 wt % of a copolymer of poly(ethylene glycol) methyl ether(meth)acrylate and 1-vinylimidazole; and water; wherein the chemical mechanical polishing composition has an acidic pH; providing a chemical mechanical polishing pad; providing a semiconductor wafer containing the nonferrous metal; creating dynamic contact between the chemical mechanical polishing pad and the semiconductor wafer; and, dispensing the polishing solution at or near the interface between the chemical mechanical polishing pad and the semiconductor wafer.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: October 22, 2013
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Tirthankar Ghosh, Terence M. Thomas, Hongyu Wang, Scott A. Ibbitson
  • Patent number: 8557130
    Abstract: In forming a pattern on a substrate with reduced pattern error using a mold having an area smaller than an area of the substrate, a first resin pattern is formed on at least a first of a plurality of regions of an etching object layer by imprinting resin applied to the etching object layer using a first mold The etching object layer is then etched using the first resin pattern as an etching mask. A second resin pattern is formed on at least a second of the plurality of regions by imprinting resin applied to the etching object layer using a second mold. The etching object layer is again etched using the second resin pattern as an etching mask.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 15, 2013
    Assignee: Samsumg Electronics Co., Ltd.
    Inventors: Young Tae Cho, Suk Won Lee, Sin Kwon, Jung Woo Seo, Jeong Gil Kim
  • Patent number: 8541310
    Abstract: The present invention provides a chemical-mechanical polishing (CMP) composition for polishing a ruthenium-containing substrate in the presence of hydrogen peroxide without forming a toxic level of ruthenium tetroxide during the polishing process. The composition comprises (a) a catalytic oxidant comprising a water-soluble peroxometalate complex, an oxidizable precursor of a peroxometalate complex, or a combination thereof, (b) a particulate abrasive; and (c) an aqueous carrier. The peroxometalate complex and the precursor thereof each have a reduced form that is oxidizable by hydrogen peroxide to regenerate the peroxometalate complex during chemical-mechanical polishing. CMP methods for polishing ruthenium-containing surfaces with the CMP composition are also provided.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: September 24, 2013
    Assignee: Cabot Microelectronics Corporation
    Inventors: Daniela White, John Parker
  • Patent number: 8524103
    Abstract: A method for manufacturing a susceptor includes: forming a concave pattern in a surface of a substrate to be processed; applying a SiC paste containing a SiC powder and a sintering agent to the surface of the substrate to be processed to fill the concave pattern to form a SiC coating layer; laminating a SiC substrate on the SiC coating layer; and firing the SiC coating layer to form a SiC layer having at least one convex section on the surface of the SiC substrate.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: September 3, 2013
    Assignee: NuFlare Technology, Inc.
    Inventors: Hideki Arai, Masayoshi Yajima, Kunihiko Suzuki
  • Patent number: 8492287
    Abstract: A silicon-containing film on a substrate is subjected to a plasma process using a process gas containing fluorine and carbon, and is thereafter subjected to plasma process using an ammonia gas, whereby ammonium silicofluoride having toxicity and hygroscopic property is adhered to the substrate. The harmful ammonium silicofluoride is removed by the inventive method. After conducting the plasma process using an ammonia gas, the substrate is heated to a temperature not lower than the decomposition temperature of the ammonium silicofluoride to decompose the ammonium silicofluoride in a process container in which the plasma process was conducted, or in a process container connected with the processing vessel which the plasma process was conducted therein and is isolated from a clean room atmosphere.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: July 23, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Shigeru Tahara
  • Patent number: 8492283
    Abstract: At least a first reticle is stored in a housing of a stocker. A first gas is delivered to the housing. At least one reticle pod having an additional reticle is delivered into a enclosure within the housing of the stocker. A second gas different from the first gas is delivered to the enclosure. The reticle pod is automatically retrieved from the enclosure. The delivery and retrieval of the reticle pod and delivery of the first gas and the second gas are automatically controlled.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: July 23, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yung-Ho Chen, Wen-Chieh Tsou, Chih-Wei Huang, Wei-Cheng Wang
  • Patent number: 8492288
    Abstract: Some embodiments include methods of treating semiconductor substrates. The substrates may be exposed to one or more conditions that vary continuously. The conditions may include temperature gradients, concentration gradients of one or more compositions that quench etchant, pH gradients to assist in removing particles, and/or concentration gradients of one or more compositions that assist in removing particles. The continuously varying conditions may be imparted by placing the semiconductor substrates in a bath of flowing rinsing solution, with the bath having at least two feed lines that provide the rinsing solution therein. One of the feed lines may be at a first condition, and the other may be at a second condition that is different from the first condition. The relative amount of rinsing solution provided to the bath by each feed line may be varied to continuously vary the condition within the bath.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: July 23, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Janos Fucsko, Niraj B. Rana, Sandra Tagg, Robert J. Hanson, Gundu M. Sabde, Donald L. Yates, Patrick M. Flynn, Prashant Raghu, Kyle Grant
  • Patent number: 8465660
    Abstract: A blazed grating is disclosed as well as mode hop-free tunable lasers and a process for fabricating gratings of this type. The grating lies in a general plane and includes a plurality of elongate beams carrying mutually parallel respective reflection surfaces spaced apart from one another with a predefined pitch, each of these reflection surfaces having a normal direction inclined at a grating angle ? to the normal direction of the general plane. The grating includes a plurality of resilient suspension arms connected to the beams and intended to be fastened to a grating support. A first pair of comb electrodes is provided for applying a mechanical force to this assembly, being placed on a first side of the grating, along an axis transverse to the beams, and designed so as to allow the pitch of the grating to be modified in response to the application of the mechanical force.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: June 18, 2013
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA-Recherche et Developpement
    Inventors: Ross Stanley, Maurizio Tormen, Rino Kunz, Philippe Niedermann
  • Patent number: 8404595
    Abstract: A plasma processing method for processing a target substrate uses a plasma processing apparatus which includes a vacuum evacuable processing vessel for accommodating the target substrate therein, a first electrode disposed in the processing vessel and connected to a first RF power supply for plasma generation and a second electrode disposed to face the first electrode. The method includes exciting a processing gas containing fluorocarbon in the processing vessel to generate a plasma while applying a negative DC voltage having an absolute value ranging from about 100 V to 1500 V or an RF power of a frequency lower than about 4 MHz to the second electrode. The target layer is etched by the plasma, thus forming recesses on the etching target layer based on the pattern of the resist layer.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: March 26, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Honda, Manabu Sato, Yoshiki Igarashi
  • Patent number: 8377829
    Abstract: A substrate is provided having an oxide layer, a first nitride-silicon, a STI, and a second nitride-silicon. A pattern poly-silicon layer on the second nitride-silicon layer is etched to form a deep trench opening. Etching the pattern poly-silicon layer also deepens the deep trench opening. Then, a conductive layer is filled in the deep trench opening.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: February 19, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Ta-Chuan Yeh, Ni-Min Chung, Kao-Su Huang, Yung-Chang Lin, Ruey-Chyr Lee, Chien-Kuo Wang
  • Patent number: 8366952
    Abstract: A micro-fluid ejection device structure and method therefor having improved low energy design. The devices include a semiconductor substrate and an insulating layer deposited on the semiconductor substrate. A plurality of heater resistors are formed on the insulating layer from a resistive layer selected from the group consisting of TaAl, Ta2N, TaAl(O,N), TaAlSi, Ti(N,O), WSi(O,N), TaAlN, and TaAl/TaAlN. A sacrificial layer selected from an oxidizable metal and having a thickness ranging from about 500 to about 5000 Angstroms is deposited on the plurality of heater resistors. Electrodes are formed on the sacrificial layer from a first metal conductive layer to provide anode and cathode connections to the plurality of heater resistors. The sacrificial layer is oxidized in a plasma oxidation process to provide a fluid contact layer on the plurality of heater resistors.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: February 5, 2013
    Assignee: Lexmark International, Inc.
    Inventors: Frank E. Anderson, Byron V. Bell, Robert W. Cornell, Yimin Guan
  • Patent number: 8337716
    Abstract: The sarcosine compounds used as a corrosion inhibitor according to the present invention include sarcosine and salt compounds thereof. The corrosion inhibitor is used in chemical mechanical polishing compositions or post CMP clean agents, which forms a protective film on the surface of a work piece to prevent the work piece from corrosion in chemical mechanical polishing, and thus common residue defect on the surface of a work piece due to the use of a conventional corrosion inhibitor (e.g. benzotriazole (BTA)) can be improved or the surface of a work piece can be protected from corrosion in post-CMP cleaning.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: December 25, 2012
    Assignee: UWiZ Technology Co., Ltd.
    Inventor: Song-Yuan Chang
  • Patent number: 8318033
    Abstract: The present invention relates to a conductive tape. The conductive tape includes a adhesive layer and a plurality of carbon nanotubes. The adhesive layer has a first surface and an opposite second surface. The carbon nanotubes are substantially embedded in parallel in the adhesive layer and perpendicular to the first surface and the second surface. Each of the carbon nanotubes has two opposite ends extending out of the two opposite surfaces of the adhesive layer respectively. Further, a method for making the above-described conductive tape is also included.
    Type: Grant
    Filed: December 29, 2007
    Date of Patent: November 27, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Wei-Qi Fu, Liang Liu, Peng Liu, Yuan-Chao Yang, Shou-Shan Fan
  • Patent number: 8303829
    Abstract: A method of fabricating an apparatus of fabricating a flat panel display device and method of fabricating flat panel display device is disclosed, which enables simplification of process by performing a patterning process without a photo process, the method for fabricating an apparatus of fabricating flat panel display device comprising, preparing a master mold including a thin film pattern, coating a liquid-type molding material including oligomer on the master mold, forming a soft mold including a groove provided with a pattern in a shape corresponding to the thin film pattern of the master mold and adhering the soft mold to a mold support plate, wherein the soft mold is adhered to the mold support plate by a covalent bonding in the interface between the oligomer and the mold support plate.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: November 6, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Jin Wuk Kim, Mi Kyung Park