Patents Examined by Steven H. Loke
  • Patent number: 11069876
    Abstract: An organic electroluminescence display device has a plurality of pixels, each of the pixels including a first portion and a second portion. The first portion has an organic light emitting element and is configured to display images. The second portion is a transparent transmission area through which an external object is visible and includes a foreign substance collecting member. The foreign substance collecting member is made of a ferromagnetic substance and is configured to receive electric current from an external current source through a connecting line and an electric field application pad. When electric current is applied to the electric field application pad, a magnetic field is applied to the foreign substance collecting member, and foreign substance in the first portion is collected by the foreign substance collecting member in the second portion, preventing the foreign substance from being deposited in the first portion.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: July 20, 2021
    Assignee: LG Display Co., Ltd.
    Inventor: Sungsoo Gil
  • Patent number: 11069619
    Abstract: An interconnect structure and an electronic device including the interconnect structure are disclosed. The interconnect structure may include a metal interconnect having a bottom surface and two opposite side surfaces surrounded by a dielectric layer, a graphene layer on the metal interconnect, and a metal bonding layer providing interface adhesion between the metal interconnect and the graphene layer. The metal bonding layer includes a metal material.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: July 20, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seunggeol Nam, Hyeonjin Shin, Keunwook Shin, Changhyun Kim, Kyung-Eun Byun, Hyunjae Song, Eunkyu Lee, Changseok Lee, Alum Jung, Yeonchoo Cho
  • Patent number: 11056594
    Abstract: A semiconductor device structure is provided. The structure includes a semiconductor substrate having a well pick-up region and an active region adjacent to the well pick-up region. The semiconductor device structure also includes a first fin structure with a first width and a third fin structure with a third width formed adjacent to each other in the well pick-up region and a second fin structure with a second width and a fourth fin structure with a fourth width formed adjacent to each other in the active region. The first width is different than the second width, the third width is different than the fourth width, and the first width is substantially equal to or greater than the third width.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: July 6, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Yu-Kuan Lin, Chang-Ta Yang, Ping-Wei Wang
  • Patent number: 11056395
    Abstract: Semiconductor devices and methods of manufacturing semiconductor devices with differing threshold voltages are provided. In embodiments the threshold voltages of individual semiconductor devices are tuned through the removal and placement of differing materials within each of the individual gate stacks within a replacement gate process, whereby the removal and placement helps keep the overall process window for a fill material large enough to allow for a complete fill.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: July 6, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Chien-Hao Chen, Ching-Hwanq Su
  • Patent number: 11056506
    Abstract: A semiconductor device includes a plurality of blocks on a substrate. Trenches are disposed between the plurality of blocks. Conductive patterns are formed inside the trenches. A lower end of an outermost trench among the trenches is formed at a level higher than a level of a lower end of the trench adjacent to the outermost trench. Each of the blocks includes insulating layers and gate electrodes, which are alternately and repeatedly stacked. Pillars pass through the insulating layers and the gate electrodes along a direction orthogonal to an upper surface of the substrate.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: July 6, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seung Hyun Cho, Kwang Ho Lee, Ji Hwan Yu, Jong Soo Kim
  • Patent number: 11049973
    Abstract: Semiconductor device and fabrication method are provided. The method includes providing a substrate with a fin including a plurality of channel layers and a sacrificial layer; forming a dummy gate structure across the fin; forming first grooves in the fin on two sides of the dummy gate structure; forming a first protection layer on sidewalls of the first channel layer and the dummy gate structure; forming second grooves by etching the fin at bottoms of the first grooves; removing a portion of sidewalls of the initial second channel layer to form a second channel layer; removing the first protection layer; forming a doped source/drain layer in the first grooves and the second grooves; forming a dielectric layer over the substrate and the fin; removing the dummy gate structure and the sacrificial layers to form a gate opening; and forming a gate structure in the gate opening.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: June 29, 2021
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Fei Zhou
  • Patent number: 11043448
    Abstract: A semiconductor device and a manufacturing method thereof are disclosed. In which a first opening and a second opening are vertically separated, and are no longer restricted by the condition that a deep upper opening needs to be filled with a thick photoresist when a TSV nested hole in vertical communication forms a middle opening and lower opening, thereby satisfying devices with different thicknesses requirements. The design is no longer restricted by the lateral process of the TSV nested hole, thereby enhancing the flexibility of the design. In the photolithography process, the deep hole does not need to be filled with the photoresist, the photoresist does not need to be thick, thereby reducing the complexity of the photolithography process and improving the exposure effect. The first metal layer and the second metal layer are directly led out via a first trench, thereby simplifying the process and reducing the production cost.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: June 22, 2021
    Assignee: Wuhan Xinxin Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu Zhou, Tianjian Liu, Sheng Hu, Changlin Zhao, Xing Hu
  • Patent number: 11043517
    Abstract: A semiconductor crystal substrate includes a crystal substrate that is formed of a material including one of GaSb and InAs, a first buffer layer that is formed on the crystal substrate and formed of a material including GaSb, and a second buffer layer that is formed on the first buffer layer and formed of a material including GaSb. The first buffer layer has a p-type conductivity, and the second buffer layer has an n-type conductivity.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: June 22, 2021
    Assignee: FUJITSU LIMITED
    Inventors: Shigekazu Okumura, Shuichi Tomabechi, Ryo Suzuki
  • Patent number: 11043535
    Abstract: Cross bar array devices and methods of forming the same include first electrodes arranged adjacent to each other and extending in a first direction. Second electrodes are arranged transversely to the first electrodes. An electrolyte layer is disposed between the first electrodes and the second electrodes, the electrolyte layer comprising a nitridated dielectric material.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: June 22, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Marwan H. Khater, Seyoung Kim, Hiroyuki Miyazoe, Vijay Narayanan
  • Patent number: 11037904
    Abstract: Methods of singulation and bonding, as well as structures formed thereby, are disclosed. A method includes singulating a first chip and after the singulating the first chip, bonding the first chip to a second chip. The first chip includes a first semiconductor substrate and a first interconnect structure on a front side of the first semiconductor substrate. The singulating the first chip includes etching through a back side of the first semiconductor substrate through the first interconnect structure.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: June 15, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Tsang-Jiuh Wu, Wen-Chih Chiou
  • Patent number: 11038107
    Abstract: A semiconductor structure includes a plurality of stack structures overlying a substrate. Each stack structure includes a first chalcogenide material over a conductive material overlying the substrate, an electrode over the first chalcogenide material, a second chalcogenide material over the electrode, a liner on sidewalls of at least one of the first chalcogenide material or the second chalcogenide material, and a dielectric material over and in contact with sidewalls of the electrode and in contact with the liner. Related semiconductor devices and systems, methods of forming the semiconductor structure, semiconductor device, and systems, and methods of forming the liner in situ are disclosed.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: June 15, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Dale W. Collins, Andrea Gotti, F. Daniel Gealy, Tuman E. Allen, Swapnil Lengade
  • Patent number: 11024720
    Abstract: Techniques regarding non-SAC semiconductor devices are provided. For example, one or more embodiments described herein can comprise an apparatus, which can further comprise a gate positioned adjacent a channel region of a semiconductor body for a field effect transistor. The gate can comprise a metal liner, and wherein the metal liner is an interface between a first metal layer of the gate and a second metal layer of the gate.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: June 1, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruilong Xie, Hari Prasad Amanapu, Kangguo Cheng, Chanro Park
  • Patent number: 11018060
    Abstract: A semiconductor device includes etch stop films formed on the first gate electrode, the first source region, the first drain region, and the shallow trench isolation regions, respectively. First interlayer insulating films are formed on the etch stop film, respectively. Deep trenches are formed in the substrate between adjacent ones of the first interlayer insulating films to overlap the shallow trench isolation regions. Sidewall insulating films are formed in the deep trenches, respectively. A gap-fill insulating film is formed on the sidewall insulating film. A second interlayer insulating film is formed on the gap-fill insulating film. A top surface of the second interlayer insulating film is substantially planar and a bottom surface of the second interlayer insulating film is undulating.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: May 25, 2021
    Assignee: KEY FOUNDRY CO., LTD.
    Inventors: Yang Beom Kang, Kang Sup Shin
  • Patent number: 11018153
    Abstract: A three-dimensional memory device includes an alternating stack of source layers and drain layers located over a substrate, gate electrodes vertically extending through each of the source layers and the drain layers of the alternating stack, memory films laterally surrounding a respective one of the gate electrodes, and semiconductor channels laterally surrounding a respective one of the memory films and connected to a respective vertically neighboring pair of a source layer and a drain layer. An array of memory openings can vertically extend through the alternating stack, and each of the gate electrodes can be located within a respective one of the memory openings.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: May 25, 2021
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: James Kai, Johann Alsmeier, Murshed Chowdhury
  • Patent number: 11011446
    Abstract: A semiconductor device and a method of making the same. The device includes a semiconductor substrate having a major surface, a backside and side surfaces extending between the major surface and the backside. The semiconductor device also includes at least one metal layer extending across the backside of the substrate. A peripheral part of the at least one metal layer located at the edge of the substrate between the backside and at least one of the side surfaces extends towards a plane containing the major surface. This can prevent burrs located at the peripheral part of the at least one metal layer interfering with the mounting of the backside of the substrate on the surface of a carrier.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: May 18, 2021
    Assignee: NEXPERIA B.V.
    Inventors: Tonny Kamphuis, Leo van Gemert, Hans van Rijckevorsel, Sascha Moeller, Hartmut Buenning, Steffen Holland, Y Kuang Huang
  • Patent number: 10998324
    Abstract: A semiconductor device and method for fabricating the same are provided. The semiconductor device includes a substrate including a cell region, a core region, and a boundary region between the cell region and the core region, a boundary element isolation layer in the boundary region of the substrate to separate the cell region from the core region, a high-k dielectric layer on at least a part of the boundary element isolation layer and the core region of the substrate, a first work function metal pattern comprising a first extension overlapping the boundary element isolation layer on the high-k dielectric layer, and a second work function metal pattern comprising a second extension overlapping the boundary element isolation layer on the first work function metal pattern, wherein a first length of the first extension is different from a second length of the second extension.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: May 4, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki Wook Jung, Dong Oh Kim, Seok Han Park, Chan Sic Yoon, Ki Seok Lee, Ho In Lee, Ju Yeon Jang, Je Min Park, Jin Woo Hong
  • Patent number: 10991861
    Abstract: Flip chip LEDs incorporate multi-layer reflectors and light transmissive substrates patterned along an internal surface adjacent to semiconductor layers. A multi-layer reflector may include a metal layer and a dielectric layer containing conductive vias. Portions of a multi-layer reflector may wrap around a LED mesa including an active region, while being covered with passivation material. A substrate patterned along an internal surface together with a multi-layer reflector enables reduction of optical losses. A light transmissive fillet material proximate to edge emitting surfaces of an emitter chip may enable adequate coverage with lumiphoric material. An emitter chip may be elevated with increased thickness of solder material and/or contacts, and may reduce luminous flux loss when reflective materials are present on a submount.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: April 27, 2021
    Assignee: Cree, Inc.
    Inventors: Michael John Bergmann, Matthew Donofrio, Peter Scott Andrews, Colin Blakely, Troy Gould, Jack Vu
  • Patent number: 10971644
    Abstract: An avalanche diode is provided and includes a first semiconductor region and a second semiconductor region. At a deeper position, the avalanche diode includes a third semiconductor region having an impurity concentration lower than that of the first semiconductor region, and a fourth semiconductor region having an impurity concentration lower than that of the second semiconductor region. At a further deeper position, the avalanche diode includes a fifth semiconductor region having an impurity concentration lower than that of the third semiconductor region. In a plan view, the first semiconductor region overlaps at least a part of the third semiconductor region, the second semiconductor region overlaps at least a part of the fourth semiconductor region, and the third and fourth semiconductor regions overlap the fifth semiconductor region.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: April 6, 2021
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Junji Iwata
  • Patent number: 10957685
    Abstract: A semiconductor device and method of manufacturing a semiconductor device are provided. The semiconductor device includes a semiconductor substrate and a semiconductor layer located on the substrate; at least one shallow trench and at least one deep trench. Each of the at least one shallow trench and the at least one deep trench extending from a first major surface of the semiconductor layer. Sidewall regions and base regions of the trenches comprise a doped trench region and the trenches are at least partially filled with a conductive material contacting the doped region. The shallow trenches terminate in the semiconductor layer and the deep trench terminates in the semiconductor substrate.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: March 23, 2021
    Assignee: Nexperia B.V.
    Inventors: Steffen Holland, Zhihao Pan, Jochen Wynants, Hans-Martin Ritter, Tobias Sprogies, Thomas Igel-Holtzendorff, Wolfgang Schnitt, Joachim Utzig
  • Patent number: 10949769
    Abstract: A qubit device includes an elongated thin film uninterrupted by Josephson junctions, a quantum device in electrical contact with a proximal end of the elongated thin film, and a ground plane that is co-planar with the elongated thin film and is in electrical contact with a distal end of the elongated thin film, in which the thin film, the quantum device, and the ground plane comprise a material that is superconducting at a designed operating temperature.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: March 16, 2021
    Assignee: Google LLC
    Inventors: Yu Chen, John Martinis, Daniel Thomas Sank, Alireza Shabani Barzegar