Patents Examined by Thai T Vuong
  • Patent number: 8697531
    Abstract: A semiconductor device includes a silicon substrate having a protrusion, a gate insulating film formed over an upper surface of the protrusion of the silicon substrate, a gate electrode formed over the gate insulating film, a source/drain region formed in the silicon substrate on the side of the gate electrode, a first side wall formed over the side surface of the protrusion of the silicon substrate, the first side wall containing an insulating material, a second side wall formed over the first side wall, the second side wall having a bottom portion formed below the upper surface of the protrusion of the silicon substrate, the second side wall containing a material having a Young's modulus greater than that of the silicon substrate, and a stress film formed over the gate electrode and the second side wall.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: April 15, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Masashi Shima
  • Patent number: 8697510
    Abstract: A semiconductor device and the methods of forming the same are provided. The semiconductor device includes a low energy band-gap layer comprising a semiconductor material; a gate dielectric on the low energy band-gap layer; a gate electrode over the gate dielectric; a first source/drain region adjacent the gate dielectric, wherein the first source/drain region is of a first conductivity type; and a second source/drain region adjacent the gate dielectric. The second source/drain region is of a second conductivity type opposite the first conductivity type. The low energy band-gap layer is located between the first and the second source/drain regions.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: April 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Krishna Kumar Bhuwalka, Ken-Ichi Goto
  • Patent number: 8658476
    Abstract: A method of forming a non-volatile memory device. The method includes providing a substrate having a surface region and forming a first dielectric material overlying the surface region of the substrate. A first electrode structure is formed overlying the first dielectric material and a p+ polycrystalline silicon germanium material is formed overlying the first electrode structure. A p+ polycrystalline silicon material is formed overlying the first electrode structure using the polycrystalline silicon germanium material as a seed layer at a deposition temperature ranging from about 430 Degree Celsius to about 475 Degree Celsius without further anneal. The method forms a resistive switching material overlying the polycrystalline silicon material, and a second electrode structure including an active metal material overlying the resistive switching material.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: February 25, 2014
    Assignee: Crossbar, Inc.
    Inventors: Xin Sun, Sung Hyun Jo, Tanmay Kumar
  • Patent number: 8653626
    Abstract: A package includes a die, an encapsulant, and a capacitor. The package has a package first side and a package second side. The die has a die first side corresponding to the package first side, and has a die second side corresponding to the package second side. The die first side is opposite the die second side. The encapsulant surrounds the die. The capacitor includes a first plate and a second plate in the encapsulant, and opposing surfaces of the first plate and the second plate extend in a direction from the package first side to the package second side. The external conductive connectors are attached to at least one of the package first side and the package second side.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: February 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sut-I Lo, Ching-Wen Hsiao, Hsu-Hsien Chen, Chen-Shien Chen
  • Patent number: 8653563
    Abstract: A semiconductor device includes: a substrate comprised of gallium nitride; an active layer provided on the substrate; a first buffer layer that is provided between the substrate and the active layer and is comprised of indium aluminum nitride (InxAl1?xN, 0.15?x?0.2); and a spacer layer that is provided between the first buffer layer and the active layer and is comprised of aluminum nitride having a thickness of 1 nm or more to 10 nm or less.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: February 18, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Fumio Yamada, Takeshi Araya
  • Patent number: 8648456
    Abstract: A embedded integrated circuit package is provided, the embedded integrated circuit package including: at least one chip arranged over a chip carrier, the at least one chip including a plurality of chip contact pads; encapsulation material formed over the chip carrier and at least partially surrounding the at least one chip; a plurality of electrical interconnects formed through the encapsulation material, wherein each electrical interconnect is electrically connected to a chip contact pad; and a structure formed between the electrical interconnects of the embedded integrated circuit package, wherein the structure increases the creepage resistance between the electrical interconnects.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: February 11, 2014
    Assignee: Infineon Technologies AG
    Inventors: Joachim Mahler, Edward Fuergut, Khalil Hosseini, Georg Meyer-Berg
  • Patent number: 8648438
    Abstract: Techniques for fabricating passive devices in an extremely-thin silicon-on-insulator (ETSOI) wafer are provided. In one aspect, a method for fabricating one or more passive devices in an ETSOI wafer is provided. The method includes the following steps. The ETSOI wafer having a substrate and an ETSOI layer separated from the substrate by a buried oxide (BOX) is provided. The ETSOI layer is coated with a protective layer. At least one trench is formed that extends through the protective layer, the ETSOI layer and the BOX, and wherein a portion of the substrate is exposed within the trench. Spacers are formed lining sidewalls of the trench. Epitaxial silicon templated from the substrate is grown in the trench. The protective layer is removed from the ETSOI layer. The passive devices are formed in the epitaxial silicon.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: February 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ming Cai, Dechao Guo, Chun-Chen Yeh
  • Patent number: 8642997
    Abstract: A device with reduced gate resistance includes a gate structure having a first conductive portion and a second conductive portion formed in electrical contact with the first conductive portion and extending laterally beyond the first conductive portion. The gate structure is embedded in a dielectric material and has a gate dielectric on the first conductive portion. A channel layer is provided over the first conductive portion. Source and drain electrodes are formed on opposite end portions of a channel region of the channel layer. Methods for forming a device with reduced gate resistance are also provided.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: February 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Shu-Jen Han, Alberto Valdes Garcia
  • Patent number: 8637765
    Abstract: Provided is a single junction type CIGS thin film solar cell, which includes a CIGS light absorption layer manufactured using a single junction. The single junction type CIGS thin film solar cell includes a substrate, a back contact deposited on the substrate, a light absorption layer deposited on the back contact and including a P type CIGS layer and an N type CIGS layer coupled to the P type CIGS layer using a single junction, and a reflection prevention film deposited on the light absorption layer.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: January 28, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong-Duck Chung, Won Seok Han
  • Patent number: 8633549
    Abstract: A semiconductor device comprises a metal gate electrode, a passive device and a hard mask layer. The passive device has a poly-silicon element layer. The hard mask layer is disposed on the metal gate electrode and the passive electrode and has a first opening and a second opening substantially coplanar with each other, wherein the metal gate electrode and the poly-silicon element layer are respectively exposed via the first opening and the second opening; and there is a distance between the first opening and the metal gate electrode substantially less than the distance between the second opening and the poly-silicon element layer.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: January 21, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chieh-Te Chen, Shih-Fang Tzou, Jiunn-Hsiung Liao, Yi-Po Lin
  • Patent number: 8598560
    Abstract: A resistive memory element comprising a conductive material, an active material over the conductive material, and an ion source material on the active material and comprising at least one chalcogen, at least one active metal, and at least one additional element. Additional resistive memory elements, as well as methods of forming resistive memory elements, and related resistive memory cells and resistive memory devices are also described.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 3, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Marko Milojevic, John A. Smythe, Gurtej S. Sandhu
  • Patent number: 8581254
    Abstract: The present approach involves a radiation detector module with increased quantum efficiency and methods of fabricating the radiation detector module. The module includes a scintillator substrate and a photodetector fabricated on the scintillator substrate. The photodetector includes an anode, active organic elements, and a cathode. The module also includes a pixel element array disposed over the photodetector. During imaging, radiation attenuated by an object to be imaged may propagate through the pixel element array and through the layers of the photodetector to be absorbed by the scintillator which in response emits optical photons. The photodetector may absorb the photons and generate charge with improved quantum efficiency, as the photons may not be obscured by the cathode or other layers of the module. Further, the module may include reflective materials in the cathode and at the pixel element array to direct optical photons towards the active organic elements.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: November 12, 2013
    Assignee: General Electric Company
    Inventors: Aaron Judy Couture, Steven Jude Duclos, Joseph John Shiang, Gautam Parthasarathy
  • Patent number: 8569111
    Abstract: The reliability of a semiconductor device is enhanced. A first lead frame, a first semiconductor chip, a second lead frame, and a second semiconductor chip are stacked over an assembly jig in this order with solder in between and solder reflow processing is carried out to fabricate their assembly. Thereafter, this assembly is sandwiched between first and second molding dies to form an encapsulation resin portion. The upper surface of the second die is provided with steps. At a molding step, the second lead frame is clamped between the first and second dies at a position higher than the first lead frame; and a third lead frame is clamped between the first and second dies at a higher position. The assembly jig is provided with steps at the same positions as those of the steps in the upper surface of the second die in positions corresponding to those of the same.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: October 29, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Yuichi Machida
  • Patent number: 8569082
    Abstract: Various exemplary embodiments provide components, devices, and methods of semiconductor packaging. The disclosed packaging component can include a mold material disposed around a lead frame and at least an integrated circuit (IC), wherein the IC is electrically connected with one side of the lead frame. The opposite side of the lead frame including, for example, lead segments, can be exposed from the mold material. A variety of other components, devices, and packages can then be assembled, e.g., over the disclosed packaging component, through the exposed regions so as to improve packaging densities.
    Type: Grant
    Filed: September 24, 2011
    Date of Patent: October 29, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Steven A. Kummerl, Sreenivasan K Koduri
  • Patent number: 8563404
    Abstract: A process to divide a wafer into individual chips is disclosed. The process (1) etches semiconductor layers for an active device to form two grooves putting the virtual cut line therebetween, where the semiconductor wafer is to be divided along the virtual cut line; (2) etches the substrate in a region including the virtual cut line but offset from the groove from the back surface thereof so as to expose the semiconductor layers in the primary surface; and (3) etches the semiconductor layer exposed in step (2).
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: October 22, 2013
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Toshiyuki Kosaka
  • Patent number: 8557643
    Abstract: A device with reduced gate resistance includes a gate structure having a first conductive portion and a second conductive portion formed in electrical contact with the first conductive portion and extending laterally beyond the first conductive portion. The gate structure is embedded in a dielectric material and has a gate dielectric on the first conductive portion. A channel layer is provided over the first conductive portion. Source and drain electrodes are formed on opposite end portions of a channel region of the channel layer. Methods for forming a device with reduced gate resistance are also provided.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Shu-Jen Han, Alberto Valdes Garcia
  • Patent number: 8536558
    Abstract: Resistive random-access memory (RRAM) structures are formed with ultra-thin RRAM-functional layers, thereby improving memory margins. Embodiments include forming an interlayer dielectric (ILD) over a bottom electrode, forming a sacrificial layer over the ILD, removing a portion of the ILD and a portion of the sacrificial layer vertically contiguous with the portion of the ILD, forming a cell area, forming a metal layer within the cell area, forming an interlayer dielectric structure above or surrounded by and protruding above the metal layer, a top surface of the interlayer dielectric structure being coplanar with a top surface of the sacrificial layer, removing the sacrificial layer, forming a memory layer on the ILD and/or on side surfaces of the interlayer dielectric structure, and forming a dielectric layer surrounding at least a portion of the interlayer dielectric structure.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: September 17, 2013
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Shyue Seng (Jason) Tan, Eng Huat Toh, Elgin Quek
  • Patent number: 8530949
    Abstract: An antifuse whose internal written information cannot be analyzed even by utilizing methods to determine whether there is a charge-up in the electrodes. The antifuse includes a gate insulation film, a gate electrode, and a first diffusion layer. A second diffusion layer is isolated from the first diffusion layer by way of a device isolator film, and is the same conduction type as the first diffusion layer. The gate wiring is formed as one integrated piece with the gate electrode, and extends over the device isolator film. A common contact couples the gate wiring to the second diffusion layer. The gate electrode is comprised of semiconductor material such as polysilicon that is doped with impurities of the same conduction type as the first diffusion layer. The second diffusion layer is coupled only to the common contact.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: September 10, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takuji Onuma, Kenichi Hidaka, Hiromichi Takaoka, Yoshitaka Kubota, Hiroshi Tsuda, Kiyokazu Ishige
  • Patent number: 8530997
    Abstract: A double seal ring for an integrated circuit includes a first seal ring with a first opening. The first seal ring surrounds the integrated circuit. A second seal ring with a second opening surrounds the first seal ring. Two connectors connect the first opening of the first seal ring and the second opening of the second seal ring. The first seal ring, the second seal ring, and the two connectors form a closed loop.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: September 10, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hui Yang, Hsin Wei Chiu
  • Patent number: 8518825
    Abstract: The present invention relates to manufacturing technology of damascene copper interconnection in the semiconductor manufacturing field, and especially relates to a method to manufacture by trench-first copper interconnection. The method to manufacture trench-first copper interconnection forms metal trench and VIA hole structures in the photoresist which can form a hard mask through exposure and development processes, and then forms metal interconnection lines via etching metal trench and VIA hole in one etch process. The above method replaces the existing.
    Type: Grant
    Filed: December 24, 2012
    Date of Patent: August 27, 2013
    Assignee: Shanghai Huali Microelectronics Corporation
    Inventor: Zhibiao Mao