Patents Examined by Thanhha Pham
  • Patent number: 8896039
    Abstract: A method for manufacturing a solid-state imaging device includes: forming pixels that receive incident light in a pixel array area of a substrate; forming pad electrodes in a peripheral area located around the pixel array area of the substrate; forming a carbon-based inorganic film on an upper surface of each of the pad electrodes including a connection surface electrically connected to an external component; forming a coated film that covers upper surfaces of the carbon-based inorganic films; and forming an opening above the connection surface of each of the pad electrodes to expose the connection surface.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: November 25, 2014
    Assignee: Sony Corporation
    Inventor: Hiroshi Horikoshi
  • Patent number: 8890338
    Abstract: A chip and a method of fabricating the chip for low cost chip identification circuitry. In one embodiment, a method of manufacturing an integrated circuit includes formation of a multi-level metallization structure including a pad level comprising programming pads. A plurality of active devices are formed on a substrate, and multiple levels of metallization are formed over the active devices, connecting some of the active devices to form programmable circuitry. The programmable circuitry is connected to pairs of programming pads on the bond pad level. Programming pads in some of the pairs are selectively connected to one another by using conductive ink deposited with maskless inkjet printing techniques. The pads are then covered with a non-conductive protective layer.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: November 18, 2014
    Assignee: Agere Systems, Inc.
    Inventor: Edward B. Harris
  • Patent number: 8889543
    Abstract: A method of fabricating a semiconductor device includes forming switching devices on a substrate. A lower structure is formed in the substrate having the switching devices. A lower conductive layer is formed on the lower structure. Sacrificial mask patterns are formed on the lower conductive layer. Lower conductive patterns are formed by etching the lower conductive layer using the sacrificial mask patterns as an etch mask. An interlayer insulating layer is formed on the substrate having the lower conductive patterns. Interlayer insulating patterns are formed by planarizing the interlayer insulating layer until the sacrificial mask patterns are exposed. Openings exposing the lower conductive patterns are formed by removing the exposed sacrificial mask patterns. Upper conductive patterns self-aligned with the lower conductive patterns are formed in the openings.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Min Baek, In-Sun Park, Jong-Myeong Lee, Jong-Won Hong, Hei-Seung Kim, Jung-Soo Yoon
  • Patent number: 8883626
    Abstract: A method is provided for fabricating an interconnection structure. The method includes providing a semiconductor substrate having certain semiconductor devices inside, a dielectric layer covering the semiconductor devices, and vias inside the dielectric layer connecting with connection pads of the semiconductor devices. The method also includes forming a first conductive layer on the semiconductor substrate, and forming a second conductive layer with smaller grain sizes by doping the first conductive layer. Further, the method includes forming an interconnection pad by patterning the second conductive layer, and forming a connection wire on the interconnection pad.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: November 11, 2014
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Ming Zhou
  • Patent number: 8883630
    Abstract: A method of forming contact holes includes: forming a first conductive layer and a second conductive layer; forming an insulating layer on the first conductive layer and the second conductive layer; forming a photoresist pattern which exposes first and second etch surfaces of a top surface of the insulating layer; performing a first etching process on the insulating layer at a first etching rate; and performing a second etching process on the insulating layer at a second etching rate which is higher than the first etching rate, after a top surface of the first conductive layer is exposed through the insulating layer. The first etch surface is on the first conductive layer, the second etch surface is on the second conductive layer, and a distance between the second etch surface and the second conductive layer is greater than a distance between the first etch surface and the first conductive layer.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 11, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Yong Jae Jang
  • Patent number: 8884365
    Abstract: A field effect transistor (FET) includes a body region of a first conductivity type disposed within a semiconductor region of a second conductivity type and a gate trench extending through the body region and terminating within the semiconductor region. The FET also includes a flared shield dielectric layer disposed in a lower portion of the gate trench, the flared shield dielectric layer including a flared portion that extends under the body region. The FET further includes a conductive shield electrode disposed in the trench and disposed, at least partially, within the flared shield dielectric.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: November 11, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Christopher Boguslaw Kocon, Steven P. Sapp, Dean E. Probst, Nathan L. Kraft, Thomas E. Grebs, Rodney S. Ridley, Gary M. Dolny, Bruce D. Marchant, Joseph A. Yedinak
  • Patent number: 8877634
    Abstract: The inventive concept provides methods of manufacturing semiconductor devices having a fine pattern. In some embodiments, the methods comprise forming an etch-target film on a substrate, forming a first mask pattern on the etch-target film, forming a second mask pattern by performing an ion implantation process in the first mask pattern, and etching the etch-target film using the second mask pattern.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: November 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Woon Shin, Bong-Hyun Kim, Su-Min Kim, Hyo-Jung Kim, Chang-Min Park, Soo-Jin Hong
  • Patent number: 8877583
    Abstract: In a method of forming an ohmic layer of a DRAM device, the metal silicide layer between the storage node contact plug and the lower electrode of a capacitor is formed as the ohmic layer by a first heat treatment under a first temperature and an instantaneous second heat treatment under a second temperature higher than the first temperature. Thus, the metal silicide layer has a thermo-stable crystal structure and little or no agglomeration occurs on the metal silicide layer in the high temperature process. Accordingly, the sheet resistance of the ohmic layer may not increase in spite of the subsequent high temperature process.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: November 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Bum Kim, Young-Pil Kim, Kwan-Heum Lee, Sun-Ghil Lee
  • Patent number: 8871614
    Abstract: A semiconductor die and a related method of processing a semiconductor wafer are disclosed in which a first interlayer insulator having a recess region of varying configuration and defining a scribe line is associated with at least one protective layer formed with a characterizing inclined side surface.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-joon Kim, Hyeoung-won Seo
  • Patent number: 8860186
    Abstract: A method for forming an integrated circuit including the steps of: forming electronic components on a first surface of a substrate; forming a stack of interconnection levels on the first surface, each interconnection level including conductive tracks separated by an insulating material; forming at least one hole from a second surface of the substrate, opposite to the first surface, the hole stopping on one of the conductive tracks; depositing, on the walls and the bottom of the hole, a conductive layer and filling the remaining space with a filling material; and forming, in an interconnection level or at the surface of the interconnection stack, and opposite to said at least one hole, at least one region of a material having a modulus of elasticity greater than 50 GPa and an elongation at break greater than 20%, insulated from the conductive tracks.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: October 14, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Mohamed Bouchoucha, Laurent-Luc Chapelon
  • Patent number: 8859371
    Abstract: Methods for manufacturing a semiconductor device having a dual gate dielectric layer may include providing a substrate including first and second regions, forming a first gate dielectric layer having a first thickness on the substrate, forming an interlayer insulating layer including first and second trenches exposing the first gate dielectric layer in the first and second regions, forming a sacrificial layer on the interlayer insulating layer and bottoms of the first and second trenches, forming a sacrificial pattern exposing the first gate dielectric layer of the bottom of the first trench, removing the first gate dielectric layer of the bottom of the first trench, forming a second gate dielectric layer having a second thickness on the bottom of the first trench, removing the sacrificial pattern, and forming a gate electrode on each of the first and second gate dielectric layers.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 14, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung Geun Song, Ki-Hyung Ko, Hayoung Jeon, Boun Yoon, Jeongnam Han
  • Patent number: 8859392
    Abstract: A manufacturing method of a power semiconductor includes steps of providing a first semiconductor substrate and a second semiconductor substrate, forming a metal oxide semiconductor layer on a first surface of the first semiconductor substrate, grinding a second surface of the first semiconductor substrate, forming a N-type buffer layer and a P-type injection layer on a third surface of the second semiconductor substrate through ion implanting, grinding a fourth surface of the second semiconductor substrate, and combining the second surface of the first semiconductor substrate with the third surface of the second semiconductor substrate for forming a third semiconductor substrate. As a result, the present invention achieves the advantages of enhancing the process flexibility and un-limiting the characteristics of the power semiconductor.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: October 14, 2014
    Assignee: Mosel Vitelic Inc.
    Inventor: Chien-Ping Chang
  • Patent number: 8859398
    Abstract: Adhesion of dielectric layer stacks to be formed after completing the basic configuration of transistor elements may be increased by avoiding the formation of a metal silicide in the edge region of the substrate. For this purpose, a dielectric protection layer may be selectively formed in the edge region prior to a corresponding pre-clean process or immediately prior to deposition of the refractory metal. Hence, non-reacted metal may be efficiently removed from the edge region without creating a non-desired metal silicide. Hence, the further processing may be continued on the basis of enhanced process conditions for forming interlayer dielectric materials.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: October 14, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Tobias Letz, Frank Feustel, Kai Frohberg
  • Patent number: 8853071
    Abstract: A method includes coating a photo resist over an Under-Bump Metallurgy (UBM) layer and exposing the photo resist. In the step of exposing, a light amount reaching a bottom of the photo resist is less than about 5 percent of a light amount reaching a top surface of the photo resist. The method further includes developing the photo resist to form an opening in the photo resist. A portion of the UBM layer is exposed through the opening. The opening has a bottom lateral dimension greater than a top lateral dimension. An electrical connector is formed in the opening, wherein the electrical connector is non-reflowable.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: October 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Wang, Hung-Jui Kuo, Chung-Shi Liu
  • Patent number: 8852970
    Abstract: A method for mounting a luminescent device having a mount layer on a substrate, comprising the steps of coating a metallic nano-particle paste on the substrate, disposing the mount layer of the luminescent device on the metallic nano-particle paste, and heating the mount layer and the metallic nano-particle paste to form an alloy, thereby bonding the luminescent device and the substrate.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: October 7, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Shota Shimonishi, Hiroyuki Tajima, Yosuke Tsuchiya
  • Patent number: 8853019
    Abstract: One method disclosed herein includes forming a layer of silicon/germanium having a germanium concentration of at least 30% on a semiconducting substrate, forming a plurality of spaced-apart trenches that extend through the layer of silicon/germanium and at least partially into the semiconducting substrate, wherein the trenches define a fin structure for the device comprised of a portion of the substrate and a portion of the layer of silicon/germanium, the portion of the layer of silicon/germanium having a first cross-sectional configuration, forming a layer of insulating material in the trenches and above the fin structure, performing an anneal process on the device so as to cause the first cross-sectional configuration of the layer of silicon/germanium to change to a second cross-sectional configuration that is different from the first cross-sectional configuration, and forming a final gate structure around at least a portion of the layer of silicon/germanium having the second cross-sectional configuration.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 7, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jody A. Fronheiser, Jeremy A. Wahl, Kerem Akarvardar, Ajey P. Jacob, Daniel T. Pham
  • Patent number: 8853018
    Abstract: A method for manufacturing a semiconductor device having multi-channels is provided. The method includes etching an active region of a gate region and a device isolation layer of the gate to form a gate recess, forming a first gate buried in a lower portion of the gate recess, forming an active bridge on the first gate for connecting portions of the active region at both sides of the first gate, and forming a second gate on the first gate to cover the active bridge. Therefore, a multi-channel region can be formed.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: October 7, 2014
    Assignee: SK Hynix Inc.
    Inventor: Seung Joo Baek
  • Patent number: 8846515
    Abstract: Some embodiments include methods of forming contacts. A row of projections may be formed over a semiconductor substrate. The projections may include a plurality of repeating components of an array, and a terminal projection. The terminal projection may have a sacrificial material spaced from semiconductor material of the substrate by a dielectric structure. An electrically conductive line may be formed along the row. The line may wrap around an end of the terminal projection and bifurcate into two branches that are along opposing sides of the repeating components. The individual branches may have regions spaced from the sacrificial material by segments of gate dielectric. The sacrificial material may be removed, together with the segments of gate dielectric, to form a contact opening. An electrically conductive contact may be formed within the contact opening and directly against the regions of the branches.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: September 30, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Marcello Mariani, Micaela Gabriella Tomasini
  • Patent number: 8841184
    Abstract: A semiconductor device comprises a silicate interface layer and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises metal alloy oxides.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: September 23, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Ho Lee, Nae-In Lee
  • Patent number: 8836005
    Abstract: A memory array includes a charge storage structure and a plurality of conductive materials over the charge storage structure is provided. Each conductive material, serving as a word line, has a substantially arc-sidewall and a substantially straight sidewall.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: September 16, 2014
    Assignee: MACRONIX International Co., Ltd.
    Inventors: I-Chen Yang, Yao-Wen Chang, Tao-Cheng Lu