Patents Examined by Wael Fahmy
  • Patent number: 8618678
    Abstract: A chip structure and a chip package structure are disclosed herein. The chip structure includes a chip and a bump. The chip includes at least one pad. The bump is disposed on a bounding region of the pad. The shape of the bump is triangular pillar or trapezoidal pillar. A surface area of connection between the bump and the pad is less than or equal to the bounding region. Therefore, the material usage and the cost of the bump can be reduced. In addition, such shape of the bump has directional characteristic so that it is easy to perform the chip testing via the identifiable pads, and perform the package process of bonding the chip to a circuit board or any carriers.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: December 31, 2013
    Assignee: Himax Technologies Limited
    Inventor: Chiu-Shun Lin
  • Patent number: 8610216
    Abstract: A structure for protecting an integrated circuit against electrostatic discharges, including a device for removing overvoltages between first and second power supply rails; and a protection cell connected to a pad of the circuit including a diode having an electrode, connected to a region of a first conductivity type, connected to the second power supply rail and having an electrode, connected to a region of a second conductivity type, connected to the pad and, in parallel with the diode, a thyristor having an electrode, connected to a region of the first conductivity type, connected to the pad and having a gate, connected to a region of the second conductivity type, connected to the first rail, the first and second conductivity types being such that, in normal operation, when the circuit is powered, the diode is non-conductive.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: December 17, 2013
    Assignee: STMicroelectronics S.A.
    Inventors: Philippe Galy, Christophe Entringer, Jean Jimenez
  • Patent number: 8604565
    Abstract: A physical quantity detection device includes: an insulating layer; a semiconductor layer on the insulating layer; and first and second electrodes in the semiconductor layer. Each electrode has a wall part, one of which includes two diaphragms and a cover part. The diaphragms facing each other provide a hollow cylinder having an opening covered by the cover part. One diaphragm faces the other wall part or one diaphragm in the other wall part. A distance between the one diaphragm and the other wall part or the one diaphragm in the other wall part is changed with pressure difference between reference pressure in the hollow cylinder and pressure of an outside when a physical quantity is applied to the diaphragms. The physical quantity is detected by a capacitance between the first and second electrodes.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: December 10, 2013
    Assignee: DENSO CORPORATION
    Inventors: Tetsuo Fujii, Minekazu Sakai, Takumi Shibata
  • Patent number: 8586957
    Abstract: A three-terminal switching device for use in integrated circuit devices, including a phase change material (PCM) disposed in contact between a first terminal and a second terminal; a heating device disposed in direct electrical contact between said second terminal and a third terminal, said heating device positioned proximate said PCM, and configured to switch the conductivity of a transformable portion of said PCM between a lower resistance crystalline state and a higher resistance amorphous state; and an insulating layer configured to electrically isolate said heater from said PCM material, and said heater from said first terminal.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: November 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Lia Krusin-Elbaum, Dennis M. Newns, Matthew R. Wordeman
  • Patent number: 8580684
    Abstract: In sophisticated semiconductor devices, contact elements in the contact level may be formed by patterning the contact openings and filling the contact openings with the metal of the first metallization layer in a common deposition sequence. To this end, in some illustrative embodiments, a sacrificial fill material may be provided in contact openings prior to depositing the dielectric material of the first metallization layer.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: November 12, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Robert Seidel, Kai Frohberg, Carsten Peters
  • Patent number: 8575643
    Abstract: A light-emitting device includes a first compound semiconductor layer, an active layer, and a second compound semiconductor layer; a second electrode formed on the second compound semiconductor layer; an insulating layer covering the second electrode; a first opening provided to pass through the insulating layer, the second electrode, the second compound semiconductor layer, and the active layer; a second opening provided to pass through the insulating layer; a first electrode formed on an exposed portion of the first compound semiconductor layer at the bottom of the first opening; a first electrode extension extending from the first electrode to the insulating layer through the first opening and a first pad portion including a portion of the first electrode extension on the insulating layer; and a second pad portion connected to an exposed portion of the second electrode at the bottom of the second opening.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: November 5, 2013
    Assignee: Sony Corporation
    Inventors: Yoshiaki Watanabe, Tomonori Hino, Nobukata Okano, Hisayoshi Kuramochi, Tatsuo Ohashi
  • Patent number: 8569122
    Abstract: A manufacturing method for a low temperature polysilicon (LTPS) thin film transistor (TFT) array substrate, comprising: forming a polysilicon layer on a substrate; forming a gate insulating layer on the polysilicon layer; forming a gate metal layer on the gate insulating layer; and patterning the gate metal layer, the gate insulating layer and the polysilicon layer by using a half tone mask (HTM) or a gray tone mask (GTM) so as to obtain a gate electrode and a polysilicon semiconductor pattern in a single mask process, a central part of the polysilicon semiconductor pattern is covered by the gate electrode, and the polysilicon semiconductor pattern has two parts, which are not covered by the gate electrode at two sides of the gate electrode, for forming a source region and a drain region.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: October 29, 2013
    Assignee: BOE Technology Group., Ltd.
    Inventors: Guangcai Yuan, Gang Wang
  • Patent number: 8563394
    Abstract: Solutions for forming an integrated circuit structure having a substantially planar N-P step height are disclosed. In one embodiment, a method includes: providing a structure having an n-type field effect transistor (NFET) region and a p-type field effect transistor (PFET) region; forming a mask over the PFET region to leave the NFET region exposed; performing dilute hydrogen-flouride (DHF) cleaning on the exposed NFET region to substantially lower an STI profile of the NFET region; and forming a silicon germanium (SiGE) channel in the PFET region after the performing of the DHF.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: October 22, 2013
    Assignees: International Business Machines Corporation, GLOBALFOUNDRIES Inc.
    Inventors: Weipeng Li, Deleep R. Nair, Jae-Eun Park, Voon-Yew Thean, Young Way Teh
  • Patent number: 8564007
    Abstract: A semiconductor component comprising an optically active layer and characterized by at least one cooling element and at least one coupling element. Also disclosed is an arrangement comprising a multiplicity of optically active layers and a method for producing a semiconductor component.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: October 22, 2013
    Assignee: Osram Opto Semiconductors GmbH
    Inventor: Siegfried Herrmann
  • Patent number: 8558275
    Abstract: This invention discloses a semiconductor power device formed in a semiconductor substrate. The semiconductor power device further includes rows of multiple horizontal columns of thin layers of alternate conductivity types in a drift region of the semiconductor substrate where each of the thin layers having a thickness to enable a punch through the thin layers when the semiconductor power device is turned on. In a specific embodiment the thickness of the thin layers satisfying charge balance equation q*ND*WN=q*NA*WP and a punch through condition of WP<2*WD*[ND/(NA+ND)] where ND and WN represent the doping concentration and the thickness of the N type layers 160, while NA and WP represent the doping concentration and thickness of the P type layers; WD represents the depletion width; and q represents an electron charge, which cancel out. This device allows for a near ideal rectangular electric field profile at breakdown voltage with sawtooth like ridges.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: October 15, 2013
    Assignee: Alpha and Omega Semiconductor Ltd
    Inventor: Madhur Bobde
  • Patent number: 8552560
    Abstract: Passivation integration schemes and pad structures to reduce the stress gradients and/or improve the contact surface existing between the Al in the pad and the gold wire bond. One of the pad structures provides a plurality of recessed pad areas which are formed in a single aluminum pad. An oxide mesa can be provided under the aluminum pad. Another pad structure provides a single recessed pad area which is formed in a single aluminum pad, and the aluminum pad is disposed above a copper pad and a plurality of trench/via pads. Still another pad structure provides a single recessed pad area which is formed in a single aluminum pad, and the aluminum pad is disposed above a portion of a copper pad, such that the aluminum pad and the copper pad are staggered relative to each other.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: October 8, 2013
    Assignee: LSI Corporation
    Inventors: Hemanshu Bhatt, Dilip Vijay, Jayanthi Pallinti, Sey-Shing Sun, Hong Ying, Chiyi Kao
  • Patent number: 8541871
    Abstract: A lead frame (100) for a semiconductor device is formed by applying nickel plating (102), palladium plating (103), and gold flash plating (104) substantially entirely to lead frame body (101) such as copper thin plate in this order, and further applying silver plating (105) selectively to part of an inner part that is to be enclosed with a package of the semiconductor device. The lead frame (100) may also include a base of the package. The silver plating contributes to an excellent light reflectance and wire bonding efficiency of the inner part, whereas the gold flash plating contributes to an excellent resistance to corrosion and soldering efficiency of an outer part that is outside the package.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: September 24, 2013
    Assignee: Panasonic Corporation
    Inventors: Hidekazu Tomohiro, Masayuki Fujii, Norio Satou, Tomoyuki Yamada, Tomio Kusano
  • Patent number: 8530351
    Abstract: A semiconductor package and a fabrication method thereof are disclosed, whereby an environmental problem is solved by using external connection terminals or semiconductor element-mounting terminals containing a smaller amount of lead, while at the same time achieving a fine pitch of the terminals. The semiconductor package includes a board (20) including a plurality of insulating resin layers, semiconductor element-mounting terminals (18) formed on the uppermost surface of the board, and external connection terminals (12) formed on the bottom surface thereof. Each external connection terminal (12) is formed as a bump projected downward from the bottom surface of the package, and each bump is filled with the insulating resin (14) while the surface thereof is covered by a metal (16). Wiring (24), (26) including a conductor via (26a) electrically connect the metal of the metal layer 16 and the semiconductor element-mounting terminals (18).
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: September 10, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Junichi Nakamura
  • Patent number: 8518759
    Abstract: A method for fabricating a field-effect transistor is provided. The method includes forming a substrate region, forming two terminal regions at the substrate region, one terminal region being a source region and the other terminal region being a drain region, forming two electrically insulating insulating layers, which are arranged at mutually opposite sides of the substrate region and are adjoined by control regions, forming an electrically conductive connecting region, which electrically conductively connects one of the terminal regions and the substrate region the conductive connecting region comprising a metal-semiconductor compound, leveling a surface by chemical mechanical polishing after forming the control regions, etching-back the control regions after polishing, and performing a self-aligning method for forming the metal-semiconductor compound in the etched-back regions, on the substrate region, and on a terminal region.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: August 27, 2013
    Assignee: Infineon Technologies AG
    Inventor: Ronald Kakoschke
  • Patent number: 8513762
    Abstract: A backside illuminated imaging sensor includes a vertical stacked sensor that reduces cross talk by using different silicon layers to form photodiodes at separate levels within a stack (or separate stacks) to detect different colors. Blue light-, green light-, and red light-detection silicon layers are formed, with the blue light detection layer positioned closest to the backside of the sensor and the red light detection layer positioned farthest from the backside of the sensor. An anti-reflective coating (ARC) layer can be inserted in between the red and green light detection layers to reduce the optical cross talk captured by the red light detection layer. Amorphous polysilicon can be used to form the red light detection layer to boost the efficiency of detecting red light.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: August 20, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Hsin-Chih Tai, Duli Mao, Vincent Venezia, Howard E. Rhodes
  • Patent number: 8507963
    Abstract: A photoelectric conversion device in accordance with an aspect of the present invention includes a thin-film transistor formed on a substrate, and a photo diode electrically connected to the thin-film transistor, wherein the photo diode includes a lower electrode connected to a drain electrode of the thin-film transistor, a photoelectric conversion layer formed on the lower electrode, an upper electrode formed from a transparent conductive film on the photoelectric conversion layer, the upper electrode being formed so as to be contained within an upper surface of the photoelectric conversion layer as viewed from a top, and a protective film (compound layer or the like) formed so as to protect a part of an upper surface of the photoelectric conversion layer located outside the upper electrode.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: August 13, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Masami Hayashi
  • Patent number: 8492295
    Abstract: A semiconductor structure fabrication method. A provided structure includes: a semiconductor substrate, a transistor on the semiconductor substrate, N interconnect layers on the semiconductor substrate, and a temporary filling region within the N layers. N is at least 2. The temporary filling region is heated at a high temperature sufficiently high to result in the temporary filling material being replaced by a cooling pipes system that does not include any solid or liquid material. A first portion and a second portion of the cooling pipes system are each in direct physical contact with a surrounding ambient at a first interface and a second interface respectively such that a first direction perpendicular to the first interface is perpendicular to a second direction perpendicular to the second interface. A totality of interfaces between the cooling pipes system and the ambient consists of the first interface and the second interface.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kaushik A. Kumar, Andres Fernando Munoz, Michael Ray Sievers, Richard Stephen Wise
  • Patent number: 8487322
    Abstract: A luminous body comprises a transparent plastic moulding with indentations, and LED DIEs disposed within the indentations. One side of each LED DIE lies approximately flush with an upper side of the moulding, and each LED DIE is connected to an electricity supply via electrical conductors disposed on the moulding. A method for producing such a luminous body is also disclosed.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: July 16, 2013
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Andrea Maier-Richter, Eckard Foltin, Michael Roppel, Peter Schibli
  • Patent number: 8466444
    Abstract: A switching circuit includes a plurality of three-terminal PCM switching devices connected between a voltage supply terminal and a sub-block of logic. Each of the switching devices includes a PCM disposed in contact between a first terminal and a second terminal, a heating device disposed in contact between the second terminal and a third terminal, the heating device positioned proximate the PCM, and configured to switch the conductivity of a transformable portion of the PCM between a lower resistance state and a higher resistance state; and an insulating layer configured to electrically isolate the heater from said PCM material, and the heater from the first terminal. The third terminal of a first of the PCM switching devices is coupled to a set/reset switch, and the third terminal of the remaining PCM switching devices is coupled to the second terminal of an adjacent PCM switching device in a cascade configuration.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 18, 2013
    Assignee: International Business Machines Corporation
    Inventors: Lia Krusin-Elbaum, Dennis M. Newns, Matthew R. Wordeman
  • Patent number: 8455871
    Abstract: A thin film transistor array panel is provided and includes a gate line, a gate insulating layer covering the gate line, a semiconductor layer disposed on the gate insulating layer, and a data line and a drain electrode disposed on the semiconductor layer. The data line and the drain electrode have a dual-layered structure including a lower layer and an upper layer with the lower layer having a first portion protruded outside the upper layer and the semiconductor layer having a second portion protruded outside the edge of the lower layer.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: June 4, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Chang-Oh Jeong, Woo-Sung Sohn, Dong-Gyu Kim, Shi-Yul Kim, Ki-Yeup Lee, Jean-Ho Song