Patents Examined by Walter Lindsay, Jr.
  • Patent number: 7198654
    Abstract: A separator sheet for manufacturing an electric double layer capacitor, and a method for manufacturing the electric double layer capacitor using the same, are provided. According to an embodiment, the separator sheet for manufacturing the electric double layer capacitor comprises: a plurality of separators; and a resin film holding the plurality of separators, wherein the separators are disposed in the resin film at a predetermined interval.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: April 3, 2007
    Assignee: LG Electronics Inc.
    Inventors: Kang Yoon Kim, Sang Gon Lee, Young Kee Seo, Jung Hoon Lee
  • Patent number: 7198964
    Abstract: A method for identifying faults in a semiconductor fabrication process includes storing measurements for a plurality of parameters of a wafer in the semiconductor fabrication process. A first subset of the parameters is selected. The subset is associated with a feature formed on the wafer. A principal component analysis model is applied to the first subset to generate a performance metric. A fault condition with the wafer is identified based on the performance metric. A system includes a data store and a fault monitor. The data store is adapted to store measurements for a plurality of parameters of a wafer in a semiconductor fabrication process. The fault monitor is adapted to select a first subset of the parameters, the subset being associated with a feature formed on the wafer, apply a principal component analysis model to the first subset to generate a performance metric, and identify a fault condition with the wafer based on the performance metric.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: April 3, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Gregory A. Cherry, Daniel Kadosh
  • Patent number: 7199062
    Abstract: A preferred embodiment of the invention provides a method of spin coating a liquid, such as a resist, onto a surface of a substrate. An embodiment of the invention comprises dispensing a liquid onto the surface; spinning the substrate at a first rotational velocity at least until the liquid forms a substantially uniform film on the surface of the substrate; and spinning the substrate at a second rotational velocity in an opposite direction at least until the liquid reforms a substantially uniform film on the surface of the substrate. Other embodiments include a first rotational acceleration for accelerating the substrate to the first rotational velocity, and a second rotational acceleration for accelerating the substrate to the second rotational velocity. Preferably, the second rotational acceleration is much larger than the first rotational acceleration. Still other embodiments include repeating the first velocity, second velocity sequence one or more times.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: April 3, 2007
    Assignee: Infineon Technologies AG
    Inventor: Yayi Wei
  • Patent number: 7199045
    Abstract: A method of forming a metal-filled opening in a semiconductor or other submicron device substrate includes forming a conductive bulk layer over the substrate surface and in the opening, wherein the conductive bulk layer has a first grain size. A conductive cap layer is formed over the conductive bulk layer, the conductive cap layer having a second grain size that is substantially smaller than the first grain size. At least one of the conductive bulk and cap layers are then planarized to form a planar surface that is substantially coincident with the substrate surface.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: April 3, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi Wen Liu, Jung Chih Tsao, Shih Tzung Chang, Ying Lang Wang, Kei Wei Chen
  • Patent number: 7192866
    Abstract: An alternating source MOCVD process is provided for depositing tungsten nitride thin films for use as barrier layers for copper interconnects. Alternating the tungsten precursor produces fine crystal grain films, or possibly amorphous films. The nitrogen source may also be alternated to form WN/W alternating layer films, as tungsten is deposited during periods where the nitrogen source is removed.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: March 20, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei Pan, David R. Evans, Sheng Teng Hsu
  • Patent number: 7189619
    Abstract: Vertically insulated active semiconductor regions having different thicknesses in an SOI wafer, which has an insulating layer, is produced. On the wafer, first active semiconductor regions having a first thickness are arranged in a layer of active semiconductor material. The second active semiconductor regions having a relatively smaller thickness are produced by epitaxial growth proceeding from at least one seed opening in a trench structure. The second semiconductor regions are substantially completely dielectrically insulated, laterally and vertically, from the first semiconductor regions by oxide layers. The width of the seed opening can be defined by lithography.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: March 13, 2007
    Assignee: Atmel Germany GmbH
    Inventors: Franz Dietz, Volker Dudek, Michael Graf
  • Patent number: 7189627
    Abstract: A technique is disclosed for increasing the width of a transistor (300) while the transistor itself may be scaled down. The transistor width (382) is increased by forming recesses (352) within shallow trench isolation (STI) regions (328) adjacent to the transistor (300). The recesses (352) provide an area that wraps around the transistor and thereby increases the width (382) of the transistor (300). This wraparound area provides additional space for dopant atom deposition, which facilitates a reduction in random dopant fluctuation (RDF). In this manner, transistors formed in accordance with one or more aspects of the present invention, may yield improved performance when incorporated into SRAM since the probability that such transistors will be more closely matched is increased.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: March 13, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Zhiqiang Wu, Shaofeng Yu, C. Rinn Cleavelin
  • Patent number: 7189620
    Abstract: It is an object to obtain a semiconductor device comprising a channel stop structure which is excellent in an effect of stabilizing a breakdown voltage and a method of manufacturing the semiconductor device. A silicon oxide film (2) is formed on an upper surface of an N?-type silicon substrate (1). An N+-type impurity implantation region (4) is formed in an upper surface (3) of the N?-type silicon substrate (1) in a portion exposed from the silicon oxide film (2). A deeper trench (5) than the N+-type impurity implantation region (4) is formed in the upper surface (3) of the N?-type silicon substrate (1). A silicon oxide film (6) is formed on an inner wall of the trench (5). A polysilicon film (7) is formed to fill in the trench (5). An aluminum electrode (8) is formed on the upper surface (3) of the N?-type silicon substrate (1). The aluminum electrode (8) is provided in contact with an upper surface of the polysilicon film (7) and the upper surface (3) of the N?-type silicon substrate (1).
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: March 13, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Hideki Takahashi, Shinji Aono
  • Patent number: 7186574
    Abstract: A method for forming metrology structures for a CMP process is described. A trench edge is formed in a base material or stack of materials which are preferably deposited as part of the process of fabricating the production structures on the wafer. A covering film of a second material with preferably with contrasting SEM properties is deposited over the trench edge in the base material. During CMP the covering film is preferentially worn away at the edge revealing the base material. The width of the base material which has been revealed is a measure of the progress of the CMP. Since the base material and the covering material are preferably selected to have contrasting images in an SEM, a CD-SEM can be used to precisely measure the CMP progress.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: March 6, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Sukhbir Singh Dulay, Thomas L. Leong, John Jaekoyun Yang
  • Patent number: 7183217
    Abstract: A dry-etching method using an apparatus where a wafer is placed on either of a pair of opposed electrodes provided in an etching chamber, and high-frequency power is supplied to both the opposed electrodes to effect a plasma etching. The plasma etching uses a gas containing at least Cl2 and HBr. Trenches 104a, 104b are formed, as shown in FIG. 1B, in a silicon wafer 101 shown in FIG. 1A through a mask layer such as a nitride silicon layer 103. While adjusting the high-frequency power supplied to the opposed electrode where the wafer is placed, the shape of the sidewalls 105a, 105b of the trenches 104a, 104b is controlled. Thus, the trenches can have desired shapes even if the widths of the trenches are different.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: February 27, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Etsuo Iijima, Akiteru Koh
  • Patent number: 7183209
    Abstract: The semiconductor device fabrication method of the present invention includes forming metal wirings on a semiconductor substrate, forming a first blocking layer on the semiconductor substrate and the metal wiring, forming a first FSG on the first blocking layer, forming a second blocking layer on the first FSG, forming a second FSG on the second blocking layer, and forming a protection layer on the second FSG.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: February 27, 2007
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Rae Sung Kim
  • Patent number: 7183140
    Abstract: An injection molded metal bonding tray may be utilized in the fabrication of integrated circuit devices. In one embodiment, a substrate of an integrated circuit device is placed in a pocket of an injection molded metal bonding tray. A plurality of conductors is placed on the substrate and the conductors are bonded to the substrate in an infrared reflow oven, for example. Other embodiments are described and claimed.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: February 27, 2007
    Assignee: Intel Corporation
    Inventors: Peter A. Davison, Sabina J. Houle
  • Patent number: 7183169
    Abstract: A method and arrangement for reducing the series resistance of the source and drain in a MOSFET device provides for epitaxially grown regions on top of the source and drain extensions to cover portions of the top surfaces of the silicide regions formed on the substrate. The epitaxial material provides an extra flow path for current to flow through to the silicide from the extension, as well as increasing the surface area between the source/drain and the silicide to reduce the contact resistance between the source/drain and the silicide.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: February 27, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Andrew M. Waite, Scott Luning, Philip A. Fisher
  • Patent number: 7183168
    Abstract: A method of manufacturing a semiconductor device includes implanting germanium ions into a selected portion of a semiconductor region containing at least silicon, forming P-type and N-type diffusion layers in the semiconductor region, and forming a suicide film which extends from the N type diffusion layer over to the boundary region and the P-type diffusion layer. A boundary region between the P-type and N-type diffusion layers is formed in the selected portion.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: February 27, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoshi Matsuda, Kazuya Ohuchi
  • Patent number: 7183196
    Abstract: A multilayer interconnection board is disclosed that allows reliable electrical connection between an interconnection having a large width and a large area and a via provided in a via hole formed by pressing a tool against resin. A projecting portion for electrical connection is formed integrally with the insulating member and in a second interconnection groove having a width and an area greater than those of a first interconnection groove. While a first interconnection is being deposited in the first interconnection groove and a second interconnection is being deposited in the second interconnection groove, the projecting portion is formed in the second interconnection groove and a metal plating film is provided on the projecting portion at the same time, so as to electrically connect the second interconnection with the via.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: February 27, 2007
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Shigetsugu Muramatsu, Masato Tanaka, Katsumi Yamazaki
  • Patent number: 7179732
    Abstract: An interconnection structure and a fabrication method thereof. A first organic low-k material layer, a stress redistribution layer, a second organic low-k dielectric layer are formed in sequence over a substrate, followed by forming an opening in the first organic low-k material layer, the stress redistribution layer, and the second organic low-k dielectric layer. The opening is then filled with a conductive material to form an interconnection structure. The stress redistribution layer has a heat expansion coefficient closer to that of the substrate, while such heat expansion coefficient differs more significantly from those of the first and second organic low-k material layers.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: February 20, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Chiung-Sheng Hsiung, Chih-Chao Yang, Gwo-Shil Yang, Ming-Shih Yeh, Jen-Kon Chen
  • Patent number: 7179676
    Abstract: A technique for forming Charge-Coupled Devices (CCDs) in a conventional Complementary Metal Oxide Semiconductor (CMOS) process. A number of single-layer polysilicon gates are formed on an as-grown, native doped silicon substrate, with gaps between them. Masking is used to selectively dope the gates while preventing doping of the silicon in the gaps. Masking may likewise be used to selectively silicide the gates while preventing silicide formation in the gaps. Conventional source-drain processing produces input/output diffusions for the CCD.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: February 20, 2007
    Assignee: Kenet, Inc.
    Inventors: Gerhard Sollner, Lawrence J. Kushner, Michael P. Anthony, Edward Kohler, Wesley Grant
  • Patent number: 7179702
    Abstract: A semiconductor device comprises a semiconductor substrate, an N-channel MISFET and a P-channel MISFET provided on the semiconductor substrate, each of the N- and P-channel MISFETs being isolated by an isolation region and having a gate insulating film, a first gate electrode film provided on the gate insulating film of the N-channel MISFET and composed of a first metal silicide, a second gate electrode film provided on the gate insulating film of the P-channel MISFET and composed of a second metal silicide made of a second metal material different from a first metal material composing the first metal silicide, and a work function of the first gate electrode film being lower than that of the second gate electrode film.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: February 20, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kouji Matsuo
  • Patent number: 7179709
    Abstract: in methods of fabricating a non-volatile memory device having a local silicon-oxide-nitride-oxide-silicon (SONOS) gate structure, a semiconductor substrate having a cell transistor area, a high voltage transistor area, and a low voltage transistor area, is prepared. At least one memory storage pattern defining a cell gate insulating area on the semiconductor substrate within the cell transistor area is formed. An oxidation barrier layer is formed on the semiconductor substrate within the cell gate insulating area. A lower gate insulating layer is formed on the semiconductor substrate within the high voltage transistor area. A conformal upper insulating layer is formed on the memory storage pattern, the oxidation barrier layer, and the lower gate insulating layer. A low voltage gate insulating layer having a thickness which is less than a combined thickness of the upper insulating layer and the lower gate insulating layer is formed on the semiconductor substrate within the low voltage transistor area.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: February 20, 2007
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Sang-Su Kim, Geum-Jong Bae, In-Wook Cho, Jin-Hee Kim
  • Patent number: 7179730
    Abstract: A memory device cell layout, a computer system comprising a memory device having a particular cell layout, and methods of fabricating static memory cells and semiconductor devices embodying the cells are also provided. In accordance with one embodiment of the present invention, a memory device cell layout is provided comprising four active areas positioned between selected ones of the gates and local interconnects associated with different damascene trenches of the device.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: February 20, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Todd R. Abbott