Patents Examined by Walter Lindsay, Jr.
  • Patent number: 7316958
    Abstract: Masks for fabricating a semiconductor device and methods of forming mask patterns are provided which are capable of enhancing the breakdown voltage of the fabricated semiconductor device by accurately correcting a line width pattern error of a semiconductor substrate due to a mask error during a process for forming a well ion implantation mask pattern. A disclosed mask used to manufacture a semiconductor device having complementary N-well and P-well includes: a master mask for the complementary N-well and P-well; and a light-blocking pattern on the master mask, wherein a region of the master mask, which is not a portion of the master mask adjacent to the light-blocking pattern, is etched by a predetermined thickness to have a phase shifting function.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: January 8, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Jun Seok Lee
  • Patent number: 7314804
    Abstract: A transistor device having a conformal depth of impurities implanted by isotropic ion implantation into etched junction recesses. For example, a conformal depth of arsenic impurities and/or carbon impurities may be implanted by plasma immersion ion implantation in junction recesses to reduce boron diffusion and current leakage from boron doped junction region material deposited in the junction recesses. This may be accomplished by removing, such as by etching, portions of a substrate adjacent to a gate electrode to form junction recesses. The junction recesses may then be conformally implanted with a depth of arsenic and carbon impurities using plasma immersion ion implantation. After impurity implantation, boron doped silicon germanium can be formed in the junction recesses.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: January 1, 2008
    Assignee: Intel Corporation
    Inventors: Nick Lindert, Mitchell C. Taylor
  • Patent number: 7314830
    Abstract: A Co silicide layer having a low resistance and a small junction leakage current is formed on the surface of the gate electrode, source and drain of MOSFETS by silicidizing a Co film deposited on a main plane of a wafer by sputtering using a high purity Co target having a Co purity of at least 99.99% and Fe and Ni contents of not greater than 10 ppm, preferably having a Co purity of 99.999%.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: January 1, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Shinji Nishihara, Shuji Ikeda, Naotaka Hashimoto, Hiroshi Momiji, Hiromi Abe, Shinichi Fukada, Masayuki Suzuki
  • Patent number: 7312133
    Abstract: A method of manufacturing a lateral trench-type MOSFET exhibiting a high breakdown voltage and including an offset drain region around a trench. Specifically, impurity ions are irradiated obliquely to the side wall of a trench to implant the impurity ions only into to the portion of a semiconductor substrate along the side wall of trench, impurity ions are irradiated in parallel to the side wall of trench to implant the impurity ions only into to the portion of semiconductor substrate beneath the bottom wall of trench; the substrate is heated to drive the implanted impurity ions to form an offset drain region around trench and to thermally oxidize semiconductor substrate to fill the trench 2 with an oxide. Alternatively, the semiconductor substrate is oxidized to narrow trench with oxide films leaving a narrow trench and the narrow trench left is filled with an oxide.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: December 25, 2007
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventor: Akio Kitamura
  • Patent number: 7312152
    Abstract: The corrosion of aluminum-based metal films may be minimized by applying a lactate-containing solution to the aluminum-based metal films before the aluminum-based metal films are etched. The lactate-containing solution is applied to the aluminum-based metal film before the film is etched with a corrosive etchant. Minimizing the corrosion of the aluminum-based film may increase the yield and performance of the highly reflective pixel arrays that are formed from the aluminum-based metal for use in liquid crystal on silicon (LCOS) microprocessors for digital televisions.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: December 25, 2007
    Assignee: Intel Corporation
    Inventors: Adam R. Stephenson, Hue D. Chiang
  • Patent number: 7309637
    Abstract: A structure and method of fabrication of a semiconductor device having a stress relief layer under a stress layer in one region of a substrate. In a first example, a stress relief layer is formed over a first region of the substrate (e.g., PFET region) and not over a second region (e.g., NFET region). A stress layer is over the stress relief layer in the first region and over the devices and substrate/silicide in the second region. The NFET transistor performance is enhanced due to the overall tensile stress in the NFET channel while the degradation in the PFET transistor performance is reduced/eliminated due to the inclusion of the stress relief layer. In a second example embodiment, the stress relief layer is formed over the second region, but not the first region and the stress of the stress layer is reversed.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: December 18, 2007
    Assignee: Chartered Semiconductor Manufacturing, Ltd
    Inventors: Yong Meng Lee, Haining S. Yang, Victor Chan
  • Patent number: 7306990
    Abstract: An information memory device capable of reading and writing of information by mechanical operation of a floating gate layer, in which a gate insulation film has a cavity (6), and a floating gate layer (5) having two stable deflection states in the cavity (6), the state stabilized by deflecting toward the channel side of transistor, and the state stabilized by deflecting toward the gate (7) side, writing and reading of information can be made by changing the stable deflection state of the floating gate layer (5) by Coulomb interactive force between the electrons (or positive holes 8) accumulated in the floating gate layer (5) and external electric field, and by reading the channel current change based on the state of the floating gate layer (5).
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: December 11, 2007
    Assignee: Japan Science & Technology Agency
    Inventors: Shinya Yamaguchi, Masahiko Ando, Toshikazu Shimada, Natsuki Yokoyama, Shunri Oda, Nobuyoshi Koshida
  • Patent number: 7291530
    Abstract: A method of manufacturing a semiconductor storage device having a capacitive element having a dielectric layer having a perovskite-type crystal structure represented by general formula ABO3 and a lower electrode and an upper electrode disposed so as to sandwich the dielectric layer therebetween; in the method are carried out forming, on a lower electrode conductive layer, using a MOCVD method, an initial nucleus containing at least one metallic element the same as a metallic element in the dielectric layer, forming, on the initial nucleus, using a MOCVD method, a buffer layer containing at least one metallic element the same as the metallic element contained in both the initial nucleus and the dielectric layer, in a higher content than the content of this metallic element contained in the initial nucleus, and forming, on the buffer layer, using a MOCVD method, the dielectric layer having a perovskite-type crystal structure.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: November 6, 2007
    Assignee: NEC Electronics Corporation
    Inventors: Takashi Nakagawa, Takashi Hase
  • Patent number: 7285502
    Abstract: A method for forming a porous insulative structure on a semiconductor device structure includes forming a layer of unconsolidated electrically insulative, or dielectric, material with microcapsules dispersed therethrough on at least a portion of the surface of the semiconductor device structure. The microcapsules may be hollow or include a removable filler. Once the layer has been formed, the unconsolidated material is at least partially consolidated. Filler, if any, may be removed from the microcapsules to provide a porous insulative layer or structure. This layer or structure may be configured to support conductive elements or other features of the semiconductor device.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: October 23, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Tongbi Jiang
  • Patent number: 7282415
    Abstract: A semiconductor device with strain enhancement is formed by providing a semiconductor substrate and an overlying control electrode having a sidewall. An insulating layer is formed adjacent the sidewall of the control electrode. The semiconductor substrate and the control electrode are implanted to form first and second doped current electrode regions, a portion of each of the first and second doped current electrode regions being driven to underlie both the insulating layer and the control electrode in a channel region of the semiconductor device. The first and second doped current electrode regions are removed from the semiconductor substrate except for underneath the control electrode and the insulating layer to respectively form first and second trenches. An insitu doped material containing a different lattice constant relative to the semiconductor substrate is formed within the first and second trenches to function as first and second current electrodes of the semiconductor device.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: October 16, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Da Zhang, Bich-Yen Nguyen, Voon-Yew Thean, Yasuhito Shiho, Veer Dhandapani
  • Patent number: 7282425
    Abstract: A method for fabricating a semiconductor substrate includes epitaxially growing an elemental semiconductor layer on a compound semiconductor substrate. An insulating layer is deposited on top of the elemental semiconductor layer, so as to form a first substrate. The first substrate is wafer bonded onto a monocrystalline Si substrate, such that the insulating layer bonds with the monocrystalline Si substrate. A semiconductor device includes a monocrystalline substrate, and a dielectric layer formed on the monocrystalline substrate. A semiconductor compound is formed on the dielectric layer and an elemental semiconductor material formed in proximity of the semiconductor compound and lattice-matched to the semiconductor compound.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: October 16, 2007
    Assignee: International Business Machines Corporation
    Inventors: Steven John Koester, Devendra Kumar Sadana, Ghavam G. Shahidi
  • Patent number: 7282402
    Abstract: According to the embodiments to the present disclosure, the process of making a dual strained channel semiconductor device includes integrating strained Si and compressed SiGe with trench isolation for achieving a simultaneous NMOS and PMOS performance enhancement. As described herein, the integration of NMOS and PMOS can be implemented in several ways to achieve NMOS and PMOS channels compatible with shallow trench isolation.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: October 16, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Alexander L. Barr, Dejan Jovanovic, Bich-Yen Nguyen, Voon-Yew Thean, Shawn G. Thomas, Ted R. White
  • Patent number: 7282422
    Abstract: An overlay key includes a first overlay key having a first main overlay pattern and a first auxiliary pattern, and a second overlay key having a second main overlay pattern and a second auxiliary overlay pattern, the second auxiliary overlay pattern formed at a location corresponding to the first auxiliary overlay pattern.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: October 16, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-Yoon Baek, Young-Guk Bae
  • Patent number: 7279407
    Abstract: A method of selectively plating nickel on an intermediate semiconductor device structure. The method comprises providing an intermediate semiconductor device structure having at least one aluminum or copper structure and at least one tungsten structure. One of the aluminum or copper structure and the tungsten structure is nickel plated while the other remains unplated. The aluminum or copper structure or the tungsten structure may first be activated toward nickel plating. The activated aluminum or copper structure or the activated tungsten structure may then be nickel plated by immersing the intermediate semiconductor device structure in an electroless nickel plating solution. The unplated aluminum or copper structure or the unplated tungsten structure may subsequently be nickel plated by activating the unplated structure and nickel plating the activated structure.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: October 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, James M. Wark, William M. Hiatt
  • Patent number: 7276411
    Abstract: The a trench semiconductor device such as a power MOSFET the high electric field at the corner of the trench is diminished by increasing the thickness of the gate oxide layer at the bottom of the trench. Several processes for manufacturing such devices are described. In one group of processes a directional deposition of silicon oxide is performed after the trench has been etched, yielding a thick oxide layer at the bottom of the trench. Any oxide which deposits on the walls of the trench is removed before a thin gate oxide layer is grown on the walls. The trench is then filled with polysilicon in or more stages. In a variation of the process a small amount of photoresist is deposited on the oxide at the bottom of the trench before the walls of the trench are etched. Alternatively, polysilicon can be deposited in the trench and etched back until only a portion remains at the bottom of the trench. The polysilicon is then oxidized and the trench is refilled with polysilicon.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: October 2, 2007
    Assignee: Advanced Analogic Technologies, Inc.
    Inventors: Richard K. Williams, Wayne B. Grabowski
  • Patent number: 7276409
    Abstract: A carbon containing masking layer is patterned to include a plurality of container openings therein having minimum feature dimensions of less than or equal to 0.20 micron. The container openings respectively have at least three peripheral corner areas which are each rounded. The container forming layer is plasma etched through the masking layer openings. In one implementation, such plasma etching uses conditions effective to both a) etch the masking layer to modify shape of the masking layer openings by at least reducing degree of roundness of the at least three corners in the masking layer, and b) form container openings in the container forming layer of the modified shapes. Capacitors comprising container shapes are formed using the container openings in the container forming layer. Other implementations and aspects are disclosed.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Aaron R. Wilson
  • Patent number: 7271050
    Abstract: A storage capacitor plate for a semiconductor assembly comprising a substantially continuous porous conductive storage plate comprising silicon nanocrystals residing along a surface of a conductive material and along a surface of a coplanar insulative material adjacent the conductive material, a capacitor cell dielectric overlying the silicon nanocrystals and an overlying conductive top plate. The conductive storage plate is formed by a semiconductor fabrication method comprising forming silicon nanocrystals on a surface of a conductive material and on a surface of an insulative material adjacent the conductive material, wherein silicon nanocrystals contain conductive impurities and are adjoined to formed a substantially continuous porous conductive layer.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Christopher W. Hill
  • Patent number: 7268068
    Abstract: A semiconductor device comprises a multiple insulation layer structure in which multiple insulation layers each having interconnection layer are built up and either one of the interconnection layer forming a fuse is blown in order to select a spare cell to relieve a defective cell; and an opening area corresponding to said fuse, the opening being formed on one or more insulation layers disposed above the layer which includes the fuse, wherein a side wall position corresponding to the opening of the first protective insulation film formed on the top layer of the multiple layers and a side wall position corresponding to the opening of the second protective insulation film formed on the first protective insulation film are continuous at the boundary thereof.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: September 11, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi Koike
  • Patent number: 7268005
    Abstract: An apparatus for stacking photonic devices is disclosed. The apparatus can include a base, first and second spaced apart rail portions disposed on the base, and a vacuum guide disposed on the base between the rail portions for forming a vacuum gradient that pulls a plurality of photonic devices and spacer bars together into a stack. Optionally, spaced apart photonic device supports can be placed on the base between the rail portions to lift the photonic devices off of the surface of the base. The apparatus can also include a clamping system to hold the stack in place so that a vapor deposition process can be used to apply coatings to the photonic devices. In one exemplary embodiment, the photonic devices can be laser bars.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: September 11, 2007
    Assignee: Finisar Corporation
    Inventors: John Chen, Chun Lei, Robert Shih
  • Patent number: 7265015
    Abstract: Chlorine is incorporated into pad oxide (110) formed on a silicon substrate (120) before the etch of substrate isolation trenches (134). The chlorine enhances the rounding of the top corners (140C) of the trenches when a silicon oxide liner (150.1) is thermally grown on the trench surfaces. A second silicon oxide liner (150.2) incorporating chlorine is deposited by CVD over the first liner (150.1), and then a third liner (150.3) is thermally grown. The chlorine concentration in the second liner (150.2) and the thickness of the three liners (150.1, 150.2, 150.3) are controlled to improve the corner rounding without consuming too much of the active areas (140).
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: September 4, 2007
    Assignee: ProMOS Technologies Inc.
    Inventors: Zhong Dong, Tai-Peng Lee