Patents Examined by Walter Lindsay, Jr.
  • Patent number: 7241675
    Abstract: Vias (210, 210B) are formed in a surface of a substrate. At least portions of contact pads (139, 350) are located in the vias. Contact pads (150, 340) of an integrated circuit structure are inserted into the vias and attached to the contact pads (139, 350) of the substrate. The vias provide a strong, reliable mechanical and electrical connection. A via may expose not only a contact pad (350) in the substrate but also a surrounding region. Solder (930) wets the contact pad better than the surrounding region, resulting in a stronger solder joint and better electrical conductivity. Alternatively, the contact may include multiple conductive layers (910.1, 910.2), with the top layer (910.2) being more solder wettable than the bottom layer (910.1) and the top layer covering only a portion of the bottom layer.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: July 10, 2007
    Assignee: Tru-Si Technologies, Inc.
    Inventors: Sergey Savastiouk, Sam Kao
  • Patent number: 7238606
    Abstract: Methods for fabricating a copper interconnect of a semiconductor device are disclosed. An example method for fabricating a copper interconnect of a semiconductor device deposits a first insulating layer on a substrate having at least one predetermined structure, forms a trench and via hole through the first insulating layer by using a dual damascene process, and deposits a barrier layer along the bottom and the sidewalls of the trench and via hole.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: July 3, 2007
    Assignee: Dongbu Electronics, Co., Ltd.
    Inventor: In Kyu Chun
  • Patent number: 7238568
    Abstract: The a trench semiconductor device such as a power MOSFET the high electric field at the corner of the trench is diminished by increasing the thickness of the gate oxide layer at the bottom of the trench. Several processes for manufacturing such devices are described. In one group of processes a directional deposition of silicon oxide is performed after the trench has been etched, yielding a thick oxide layer at the bottom of the trench. Any oxide which deposits on the walls of the trench is removed before a thin gate oxide layer is grown on the walls. The trench is then filled with polysilicon in or more stages. In a variation of the process a small amount of photoresist is deposited on the oxide at the bottom of the trench before the walls of the trench are etched. Alternatively, polysilicon can be deposited in the trench and etched back until only a portion remains at the bottom of the trench. The polysilicon is then oxidized and the trench is refilled with polysilicon.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: July 3, 2007
    Assignee: Advanced Analogic Technologies, Inc.
    Inventors: Richard K. Williams, Wayne B. Grabowski
  • Patent number: 7238617
    Abstract: A method for fabricating a semiconductor device to minimize a terminal effect in an ECP process is disclosed. The method for fabricating a semiconductor device to minimize a terminal effect in an ECP process, comprises depositing a barrier metallic layer on the top of a damascene pattern formed through an etching process, forming an Ag seed layer by employing a heating process for the reaction of the surface of the barrier metallic layer and a NH3 solution of AgNO3 and reductive materials in a reactor, plating a Cu layer by using the Ag seed layer through an ECP process and forming a Cu interconnect through an annealing process and a Cu CMP process. The method for fabricating a semiconductor device according to the present invention provides the improvement of uniformity by forming a seed layer with low-resistivity regardless of a thin thickness in order to avoid a terminal effect in an ECP process.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: July 3, 2007
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Ji Ho Hong
  • Patent number: 7238628
    Abstract: High density oxide films are deposited by a pulsed-DC, biased, reactive sputtering process from a titanium containing target to form high quality titanium containing oxide films. A method of forming a titanium based layer or film according to the present invention includes depositing a layer of titanium containing oxide by pulsed-DC, biased reactive sputtering process on a substrate. In some embodiments, the layer is TiO2. In some embodiments, the layer is a sub-oxide of Titanium. In some embodiments, the layer is TixOy wherein x is between about 1 and about 4 and y is between about 1 and about 7. In some embodiments, the layer can be doped with one or more rare-earth ions. Such layers are useful in energy and charge storage, and energy conversion technologies.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: July 3, 2007
    Assignee: Symmorphix, Inc.
    Inventors: Richard E. Demaray, Hong Mei Zhang, Mukundan Narasimhan, Vassiliki Milonopoulou
  • Patent number: 7238540
    Abstract: A magnetic random access memory includes a substrate; a first ferromagnetic layer; a magnetic tunnel junction (MTJ) device provided on a same side of the substrate as the first ferromagnetic layer; and a wiring layer provided between the first ferromagnetic layer and the MTJ device. The MTJ device includes a second ferromagnetic layer opposing to the wiring layer. A first perpendicular projection of the first ferromagnetic layer on the substrate and a second perpendicular projection of the second ferromagnetic layer on the substrate are different in area, and one of the first and second perpendicular projections contains the other.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: July 3, 2007
    Assignee: NEC Corporation
    Inventors: Hiroaki Honjo, Shinsaku Saitho
  • Patent number: 7235468
    Abstract: FinFET devices formed with a Silicon On Insulator (SOI) technology with reduced Drain Induced Barrier Lowering (DIBL) characteristics and methods for producing the same. The methods involve dopant implants into the insulator layer, thereby creating borophosphosilicate glass (BPSG) diffusion sources within the insulation layer underlying the active regions of the SOI wafer. Backend high temperature processing steps induce diffusion of the dopants contained in the diffusion source into the active regions, thereby forming a retrograde dopant profile extending towards the channel region. The method can be selectively applied to selected portions of a wafer to tailor device characteristics, such as for memory cells.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: June 26, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Chandra V. Mouli
  • Patent number: 7235421
    Abstract: A method for developing a manufacturing process includes measuring, in a first testing environment, a primary property of a nano-engineered material at one or more positions to provide one or more measurements. The method also includes determining whether the one or more measurements satisfy a first tolerance criterion and taking a further action based on whether the one or more measurements satisfy the first tolerance criterion. Additionally, a method of measuring thermal properties of a nano-engineered material includes irradiating a nano-engineered material with laser radiation, wherein the laser radiation impinges on a first surface of the nano-engineered material at one ore more locations, capturing at least one image of the nano-engineered material, and analyzing the at least one image to characterize the thermal properties of the nano-engineered material.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: June 26, 2007
    Inventor: Nasreen G. Chopra
  • Patent number: 7235448
    Abstract: Embodiments in accordance with the present invention provide alternative materials, and methods of forming such materials, that are effective as dielectric layers. Such embodiments include forming metal-containing dielectric layers over a silicon-containing substrate where a metal-containing layer is first formed and that treated to form a dielectric layer. Dielectric layers formed by methods of the present invention have a dielectric constant greater than that of silicon dioxide, and can have an equivalent oxide thickness of less than 2 nanometers. Such dielectric layers are useful in the forming of a variety of semiconductor devices such as transistors, capacitors and the like where such devices and integrated circuits formed from such devices are encompassed by embodiments in accordance with the present invention.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: June 26, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7232737
    Abstract: A method of forming a structure that includes a removed layer taken from a donor wafer donor wafer that includes a first layer of Si1-xGex and a second layer of Si1-yGey. The method includes implanting atomic species into the donor wafer to form a zone of weakness in the first layer; bonding the donor wafer to a receiver wafer; detaching the second layer and a portion of the first layer from the donor wafer by supplying energy sufficient to cause cleavage and form an intermediate structure thereof conducting a rapid thermal anneal of the intermediate structure at a temperature of about 1000° C. or more for less than 5 minutes; and removing by selective etching any remaining portions of the first layer of the intermediate structure to provide a semiconductor structure that has the second layer on the receiving wafer.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: June 19, 2007
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Nicolas Daval
  • Patent number: 7232751
    Abstract: According to the manufacturing method of the semiconductor device of the present invention, an oxide film is formed on a metal film formed on a main surface of a semiconductor substrate by exposing the metal film to the oxidizing gas. The oxide film is then reduced in a reducing atmosphere, and a protection film is formed on the surface of the metal film reduced in the reducing step. In this manner, the damage to the surface of the metal film can be prevented.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: June 19, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasushi Akasaka, Kazuaki Nakajima, Kiyotaka Miyano, Kyoichi Suguro
  • Patent number: 7232772
    Abstract: A substrate processing method comprises the step of forming an oxide film on a silicon substrate surface, and introducing nitrogen atoms into the oxide film by exposing the oxide film to nitrogen radicals excited in plasma formed by a microwave introduced via a planar antenna.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: June 19, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Seiji Matsuyama, Takuya Sugawara, Shigenori Ozaki, Toshio Nakanishi, Masaru Sasaki
  • Patent number: 7229847
    Abstract: The present invention provides a process for forming electrical contacts to a molecular layer in a nanoscale device, the nanoscale device, and a method of manufacturing an integrated circuit comprise such devices. The process includes coating a surface of a stamp with a metal layer and forming an attached layer of anchored molecules by coupling first ends of the anchored molecules to a conductive or semiconductive substrate. The process also includes placing the metal layer in contact with the attached layer of anchored molecules such that the metal layer chemically bonds to free ends of the anchored molecules. The resulting devices produced have superior reliability as compared to conventional prepared devices.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: June 12, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Julia Wan-Ping Hsu, Yueh-Lin Loo, John A. Rogers
  • Patent number: 7229843
    Abstract: Process exhaust gas is sampled, and the components of the process exhaust gas are analyzed by a Fourier-transform infrared spectroscope (FT-IR) (26). The analysis result is compared with a reference analysis result obtained from an analysis of process exhaust gas generated in an operation performed under reference process conditions. If the amount of a gas component changes to an amount that is outside a predetermined range set around a reference value obtained from the reference analysis result, a signal indicating a process error is outputted. Instead of the output of the signal indicating a process error, the process conditions can be automatically adjusted.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: June 12, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Kiyoshi Komiyama, Takahiro Shimoda, Hiroshi Nishikawa
  • Patent number: 7229876
    Abstract: A method of fabricating a memory device is described. During the process of forming the memory cell area and the periphery area of a semiconductor device a photoresist layer is formed on the memory cell area before the spacers are formed on the sidewalls of the gates. Therefore, the memory cell area is prevented from being damaged to mitigate the leakage current problem during the process of forming spacers in the periphery circuit area.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: June 12, 2007
    Assignee: Macronix International Co., Ltd.
    Inventors: Kent Kuohua Chang, Jongoh Kim, Yider Wu
  • Patent number: 7229917
    Abstract: A film-formation method for a semiconductor process includes seed film formation and main film formation. In the seed film formation, a metal-containing raw material gas and a first assist gas to react therewith are supplied into a process container, which accommodates a target substrate having an underlying layer, thereby forming a seed film on the underlying layer by CVD. In the main film formation, the raw material gas and a second assist gas to react therewith are supplied into the process container, thereby forming a main film on the seed film by CVD. The seed film formation includes first and second periods performed alternately and continuously. In each first period, the raw material gas is supplied into the process container while the first assist gas is stopped. In each second period, the first assist gas is supplied into the process container while the raw material gas is stopped.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: June 12, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Takahito Umehara, Masahiko Tomita, Hirotake Fujita, Kazuhide Hasebe
  • Patent number: 7229867
    Abstract: A substrate supporting a portion of a semiconductor material is used to produce a field-effect transistor. A portion of a temporary material lies between the portion of semiconductor material and the substrate. A gate is formed, which comprises an upper part in rigid connection with the portion of semiconductor material, and at least one bearing part settled on the substrate. The temporary material is removed and replaced with an electrically insulating material. During removal and replacement of the temporary material, the portion of semiconductor material is held in place relative to the substrate by the gate.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: June 12, 2007
    Assignee: STMicroelectronics SA
    Inventors: Thomas Skotnicki, Daniel Chanemougame, Stephane Monfray
  • Patent number: 7229914
    Abstract: Wiring layers through that come into direct contact with an electrode of a ferroelectric capacitor provide a wiring layer structure configured so that the characteristic of the ferroelectric substance is not degraded by production of a reducing agent. One of coating layers through is provided on the periphery of the Al main wiring layer. A single Ti film or TiN film or a combination of both is used as the coating film. The TiN film suppresses reaction between water and aluminum. The Ti film occludes hydrogen. Therefore, the coating layer provided on the periphery of the Al wiring layer inhibits water or molecular hydrogen from entering the Al wiring layer from the outside and therefore there is no degradation of the characteristics of the ferroelectric capacitor.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: June 12, 2007
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Tomomi Yamanobe
  • Patent number: 7229883
    Abstract: A method of manufacturing a memory device is provided. The method includes forming an electrode over a substrate. The method also includes forming an opening in the electrode to provide a tapered electrode contact surface proximate the opening. The method further includes forming a phase change feature over the electrode and on the tapered electrode contact surface.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: June 12, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Hsiung Wang, Li-Shyue Lai, Denny Tang, Wen-Chin Lin
  • Patent number: 7226814
    Abstract: Disclosed are a semiconductor package device and a method for fabricating the semiconductor package device. The semiconductor package has a semiconductor chip including a plurality of bonding pads having a microscopic size and aligned at a minute interval, a planar layer formed on the semiconductor chip so as to expose the bonding pads, metal patterns formed on the planar layer and having a size larger than a size of the bonding pads in such a manner that at least some parts of the metal patterns are connected to the bonding pads and a seed metal layer interposed between the planar layer and the metal patterns. When the bonding pads have microscopic size and aligned at a minute interval, a wire-bonding process is carried out by using the metal patterns having the size larger than the size of the bonding pads and covering the bonding pad region, as a connection part to the bonding pads. Thus, the bonding pad region is reduced by 50 to 80% so that the number of chips in the semiconductor chip is increased.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: June 5, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ho Uk Song