Patents Examined by Wasiul Haider
  • Patent number: 11903284
    Abstract: A pixel structure includes: gate lines and data lines disposed crosswise and a plurality of pixel repetition modules distributed in an array. A pixel repetition module includes: a plurality of pixel units arranged in order, wherein each pixel unit includes three sub-pixels arranged in a triangular structure, and the three sub-pixels in each pixel unit and the three sub-pixels in an adjacent pixel unit are arranged inversely with respect to each other; each pixel unit corresponds to two groups of gate lines, wherein each group of gate lines includes two gate lines parallel to each other, a first group of gate lines are located on a first outer side and a second outer side of the pixel units respectively, and a second group of gate lines are both located between the sub-pixels located in a first row and the sub-pixels located in a second row in the pixel units.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: February 13, 2024
    Assignees: Hefei Xinsheng Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Meng Li, Yongqian Li, Zhidong Yuan, Can Yuan
  • Patent number: 11901489
    Abstract: An electrode structure includes: an indium tin oxide (ITO) electrode that includes ITO; an Al electrode that includes Al and covers the ITO electrode; and a barrier electrode that includes at least one of TiN and Cr and is interposed in a region between the ITO electrode and the Al electrode.
    Type: Grant
    Filed: April 26, 2023
    Date of Patent: February 13, 2024
    Assignee: ROHM CO., LTD.
    Inventors: Ryosuke Ishimaru, Yohei Ito, Yasuo Nakanishi
  • Patent number: 11894427
    Abstract: A semiconductor device and a method of manufacturing a semiconductor device are provided. The semiconductor device includes a substrate having a surface. The surface has a first portion and a second portion protruding from the first portion. The semiconductor device also includes a dielectric layer disposed on the second portion and a gate conductive layer disposed on the dielectric layer.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: February 6, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Jhen-Yu Tsai
  • Patent number: 11894363
    Abstract: A semiconductor device includes: a doped well region of a first conductive type; M semiconductor components, the M semiconductor components being provided in the doped well region of the first conductive type and being arranged in the doped well region of the first conductive type in a first direction, M being a positive integer, each semiconductor component including a first doped region of a second conductive type and a doped region of a first conductive type, and the doped region of the first conductive type surrounding the first doped region of the second conductive type; and second doped regions of a second conductive type, the second doped regions of the second conductive type being provided on at least one side of the M semiconductor components in the first direction.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: February 6, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: ChihCheng Liu
  • Patent number: 11894432
    Abstract: Various embodiments provide a vertical-conduction semiconductor device that includes: a silicon substrate having a front face and a rear face; a front-side structure arranged on the front face of the substrate, having at least one current-conduction region at the front face; and a back side metal structure, arranged on the rear face of the substrate, in electrical contact with the substrate and constituted by a stack of metal layers. The back side metal structure is formed by: a first metal layer; a silicide region, interposed between the rear face of the substrate and the first metal layer and in electrical contact with the aforesaid rear face; and a second metal layer arranged on the first metal layer.
    Type: Grant
    Filed: January 11, 2022
    Date of Patent: February 6, 2024
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Crocifisso Marco Antonio Renna, Antonio Landi, Brunella Cafra
  • Patent number: 11887981
    Abstract: In a general aspect, an apparatus can include a semiconductor layer of a first conductivity type and a lateral bipolar device disposed in the semiconductor layer. The apparatus can further include an isolation trench disposed in the semiconductor layer in a base region of the lateral bipolar device. The isolation trench can be disposed between an emitter implant of the lateral bipolar device and a collector implant of the lateral bipolar device. The emitter implant and the collector implant can be of a second conductivity type, opposite the first conductivity type.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: January 30, 2024
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Yupeng Chen
  • Patent number: 11887885
    Abstract: A semiconductor-on-insulator (e.g., silicon-on-insulator) structure having superior radio frequency device performance, and a method of preparing such a structure, is provided by utilizing a single crystal silicon handle wafer sliced from a float zone grown single crystal silicon ingot.
    Type: Grant
    Filed: October 19, 2022
    Date of Patent: January 30, 2024
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Michael R. Seacrist, Robert W. Standley, Jeffrey L. Libbert, Hariprasad Sreedharamurthy, Leif Jensen
  • Patent number: 11881525
    Abstract: Bi-directional trench power switches. At least one example is a semiconductor device comprising: an upper base region associated with a first side of a substrate of semiconductor material; an upper-CE trench defined on the first side, the upper-CE trench defines a proximal opening at the first side and a distal end within the substrate; an upper collector-emitter region disposed at the distal end of the upper-CE trench; a lower base region associated with a second side of substrate; and a lower collector-emitter region associated with the second side.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: January 23, 2024
    Assignee: IDEAL POWER INC.
    Inventors: Jiankang Bu, Constantin Bulucea, Alireza Mojab, Jeffrey Knapp, Robert Daniel Brdar
  • Patent number: 11869885
    Abstract: A silicon-controlled rectifier (SCR) includes a semiconductor body including a first main surface, an active device region, a first, a second, a third and a fourth surface contact area at the first main surface and arranged directly one after another along a first lateral direction, wherein the semiconductor body is electrically contacted at each of the first to fourth surface contact areas, and a first, a second, a third and a fourth SCR region, wherein the first and third SCR regions are of a first conductivity type and directly adjoin the first and third surface contact areas, respectively, and wherein the second and fourth SCR regions are of a second conductivity type and directly adjoin the second and fourth surface contact areas, respectively, wherein the first SCR region is electrically connected to the fourth SCR region, and the second SCR region is electrically connected to the third SCR region.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: January 9, 2024
    Assignee: Infineon Technologies AG
    Inventors: Christian Cornelius Russ, Gabriel-Dumitru Cretu, Filippo Magrini
  • Patent number: 11869905
    Abstract: A detection device includes an absorbent first stack configured to absorb an electromagnetic radiation in at least a first wavelength range and presenting a first thermal expansion coefficient. It also includes a second stack forming an optical function and presenting a second thermal expansion coefficient. The first thermal expansion coefficient is different from the second thermal expansion coefficient and the detection device further includes a buffer layer separating the first stack and the second stack. The buffer layer presents a thickness included between 0.5 ?m and 50 ?m so as to absorb the mechanical stresses induced by the first stack.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: January 9, 2024
    Assignee: LYNRED
    Inventor: Nicolas Pere-Laperne
  • Patent number: 11862727
    Abstract: The invention provides a method for fabricating a fin structure for fin field effect transistor, including following steps. Providing a substrate, including a fin structure having a silicon fin and a single mask layer just on a top of the silicon fin, the single mask layer being as a top portion of the fin structure. Forming a stress buffer layer on the substrate and conformally covering over the fin structure. Performing a nitridation treatment on the stress buffer layer to have a nitride portion. Perform a flowable deposition process to form a flowable dielectric layer to cover over the fin structures. Annealing the flowable dielectric layer. Polishing the flowable dielectric layer, wherein the nitride portion of the stress buffer layer is used as a polishing stop.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: January 2, 2024
    Assignee: United Microelectronics Corp.
    Inventors: Hao Che Feng, Hung Jen Huang, Hsin Min Han, Shih-Wei Su, Ming Shu Chiu, Pi-Hung Chuang, Wei-Hao Huang, Shao-Wei Wang, Ping Wei Huang
  • Patent number: 11862735
    Abstract: An electrostatic discharge (ESD) protection device including: a substrate including: a first, second and third doped regions, the second doped region disposed between the first and third doped regions, the second doped region has a first conductivity type and a first doping concentration and the first and third doped regions have a second conductivity type and a second doping concentration; first and second doped terminal regions disposed within the first and second doped regions, respectively; and a doped island region disposed within the second doped region, the first and second doped terminal regions and doped island region have the second conductivity type and a third doping concentration, the third doping concentration higher than the first and second doping concentrations; and conductive terminals respectively coupled to the doped terminal regions; and an insulation layer arranged on the substrate between the conductive terminals and covering at least the second doped region.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: January 2, 2024
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Jie Zeng, Raunak Kumar, Souvick Mitra
  • Patent number: 11854975
    Abstract: A three-dimensional (3D) semiconductor device includes a stack structure including first and second stacks stacked on a substrate. Each of the first and second stacks includes a first electrode and a second electrode on the first electrode. A sidewall of the second electrode of the first stack is horizontally spaced apart from a sidewall of the second electrode of the second stack by a first distance. A sidewall of the first electrode is horizontally spaced apart from the sidewall of the second electrode by a second distance in each of the first and second stacks. The second distance is smaller than a half of the first distance.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: December 26, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Hun Lee, Seokjung Yun, Chang-Sup Lee, Seong Soon Cho, Jeehoon Han
  • Patent number: 11855073
    Abstract: Electrostatic discharge (ESD) structures are provided. An ESD structure includes a semiconductor substrate, a first epitaxy region with a first type of conductivity over the semiconductor substrate, a second epitaxy region with a second type of conductivity over the semiconductor substrate, and a plurality of first semiconductor layers and a plurality of second semiconductor layers. The first and second semiconductor layers are alternatingly stacked over the semiconductor substrate and between the first and second epitaxy regions. A first conductive feature is formed over the first epitaxy region and outside an oxide diffusion region. A second conductive feature is formed over the second epitaxy region and outside the oxide diffusion region. The oxide diffusion region is disposed between the first and second conductive features.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Chia Hsu, Tung-Heng Hsieh, Yung-Feng Chang, Bao-Ru Young, Jam-Wem Lee, Chih-Hung Wang
  • Patent number: 11855076
    Abstract: An electrostatic discharge (ESD) protection apparatus and method for fabricating the same are disclosed herein. In some embodiments, the ESD protection apparatus, comprises: an internal circuit patterned in a device wafer and electrically coupled between a first node and a second node, an array of electrostatic discharge (ESD) circuits patterned in a carrier wafer, where the ESD circuits are electrically coupled between a first node and a second node and configured to protect the internal circuit from transient ESD events, and where the device wafer is bonded to the carrier wafer.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tao-Yi Hung, Wun-Jie Lin, Jam-Wem Lee, Kuo-Ji Chen
  • Patent number: 11855118
    Abstract: An image sensor device includes a semiconductor substrate, a radiation sensing member, a device layer, and a color filter layer. The semiconductor substrate has a photosensitive region and an isolation region surrounding the photosensitive region. The radiation sensing member is embedded in the photosensitive region of the semiconductor substrate. The radiation sensing member has a material different from a material of the semiconductor substrate, and an interface between the radiation sensing member and the isolation region of the semiconductor substrate includes a direct band gap material. The device layer is under the semiconductor substrate and the radiation sensing member. The color filter layer is over the radiation sensing member and the semiconductor substrate.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Yu Wei, Yen-Liang Lin, Kuo-Cheng Lee, Hsun-Ying Huang, Hsin-Chi Chen
  • Patent number: 11848388
    Abstract: Structures for a silicon-controlled rectifier and methods of forming a structure for a silicon-controlled rectifier. The structure includes a first well and a second well in a semiconductor substrate. The first well has a first conductivity type, and the second well has a second conductivity type opposite to the first conductivity type. The structure further includes a first terminal having a doped region that has a portion in the first well, and a second terminal including a second doped region that has a portion in the first well and a third doped region in the second well. The first and second doped regions have the second conductivity type, the third doped region has the first conductivity type, and the second doped region is positioned in a lateral direction between the first doped region and the third doped region.
    Type: Grant
    Filed: May 17, 2022
    Date of Patent: December 19, 2023
    Assignee: GlobalFoundries Singapore Pte. Ltd.
    Inventors: Jie Zeng, Souvick Mitra
  • Patent number: 11848369
    Abstract: Embodiments provide methods for forming nanowire structures, such as, for example, horizontal gate-all-around (hGAA) structures. In one embodiment, a method includes selectively etching material from a stack disposed on a material layer located on a substrate with a plasma to create recesses on each of first and second sides of the stack and depositing a dielectric material on the first and second sides. The stack includes repeating pairs of first and second layers. The method also includes removing the dielectric material from the first and second sides, where the dielectric material remains in the recesses of the first and second sides, and selectively depositing a stressor layer on regions of the first and second sides which are unprotected by the dielectric material to form gaps between the stressor layer and the dielectric material remaining in the recesses of the first and second sides.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: December 19, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shiyu Sun, Nam Sung Kim, Bingxi Sun Wood, Naomi Yoshida, Sheng-Chin Kung, Miao Jin
  • Patent number: 11843038
    Abstract: Embodiments include a first set of fins having an emitter of a bipolar junction transistor (BJT) disposed over the first set of fins, a second set of fins having a base of the BJT disposed over the second set of fins, and a third set of fins having a collector of the BJT disposed over the third set of fins. A first gate structure is disposed over the first set of fins adjacent to the emitter. A second gate structure is disposed over the second set of fins adjacent to the base. A third gate structure is disposed over the third set of fins adjacent to the collector. The first gate structure, second gate structure, and third gate structure are physically and electrically separated.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Shuan Li, Zi-Ang Su, Ying-Keung Leung
  • Patent number: 11843044
    Abstract: Embodiments of the disclosure provide a bipolar transistor structure on a semiconductor fin. The semiconductor fin may be on a substrate and may have a first doping type, a length in a first direction, and a width in a second direction perpendicular to the first direction. The semiconductor fin includes a first portion and a second portion adjacent the first portion along the length of the semiconductor fin. The second portion is coupled to a base contact. A dopant concentration of the first portion is less than a dopant concentration of the second portion. An emitter/collector (E/C) material is adjacent the first portion along the width of the semiconductor fin. The E/C material has a second doping type opposite the first doping type. The E/C material is coupled to an E/C contact.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: December 12, 2023
    Assignee: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Hong Yu, Alexander M. Derrickson, Judson R. Holt