Patents by Inventor Ajey Poovannummoottil Jacob

Ajey Poovannummoottil Jacob has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9799767
    Abstract: One illustrative method disclosed herein includes, among other things, forming first and second fins, respectively, for a PMOS device and an NMOS device, each of the first and second fins comprising a lower substrate fin portion made of the substrate material and an upper fin portion that is made of a second semiconductor material that is different from the substrate material, exposing at least a portion of the upper fin portion of both the first and second fins, masking the PMOS device and forming a semiconductor material cladding on the exposed upper portion of the second fin for the NMOS device, wherein the semiconductor material cladding is a different semiconductor material than that of the second semiconductor material. The method also including forming gate structures for the PMOS FinFET device and the NMOS FinFET device.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: October 24, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Ajey Poovannummoottil Jacob
  • Publication number: 20170301589
    Abstract: A method includes forming an initial strain relaxed buffer layer on a semiconductor substrate. A trench is formed within the initial strain relaxed buffer layer. An epitaxial deposition process is performed to form an in situ carbon-doped strain relaxed buffer layer in the trench. A channel semiconductor material is formed on the initial strain relaxed buffer layer and on the in situ carbon-doped strain relaxed buffer layer in the trench. A plurality of fin-formation trenches that extend into the initial strain relaxed buffer layer is formed so as to thereby form an NMOS fin including the channel semiconductor material and the in situ carbon-doped strain relaxed buffer layer and a PMOS fin including the channel semiconductor material and the initial strain relaxed buffer layer. A recessed layer of insulating material and gate structures are formed around the NMOS fin and the PMOS fin.
    Type: Application
    Filed: July 6, 2017
    Publication date: October 19, 2017
    Inventor: Ajey Poovannummoottil Jacob
  • Publication number: 20170263465
    Abstract: One illustrative device includes, among other things, at least one fin defined in a semiconductor substrate and a substantially vertical nanowire having an oval-shaped cross-section disposed on a top surface of the at least one fin.
    Type: Application
    Filed: May 18, 2017
    Publication date: September 14, 2017
    Inventors: Steven Bentley, Richard A. Farrell, Gerard Schmid, Ajey Poovannummoottil Jacob
  • Patent number: 9754903
    Abstract: A semiconductor structure includes a dielectric layer, a silicidable metal layer and an undoped filler material layer are used to create an anti-efuse device. The anti-efuse device may be situated in a dielectric layer of an interconnect structure for a semiconductor device or may be planar. Where part of an interconnect structure, the anti-efuse device may be realized by causing a current to flow therethrough while applying local heating. Where planar, the filler material may be situated between extensions of metal pads and metal atoms caused to move from the extensions to the filler material layer using a current flow and local heating.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: September 5, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Suraj K. Patil, Min-hwa Chi, Ajey Poovannummoottil Jacob
  • Patent number: 9748387
    Abstract: One method disclosed includes forming first, second and third fins for a first NMOS device, a PMOS device and a second NMOS device, respectively. According to this method, the first fin consists entirely of the substrate material, the second and third fins comprise a lower substrate fin portion made of the substrate material and an upper fin portion made of a second semiconductor material and a third semiconductor material, respectively, wherein the second semiconductor material and the third semiconductor material are each different from the substrate material. The method also includes forming a semiconductor material cladding on the exposed upper portion of the third fin for the second NMOS FinFET device.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: August 29, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Ajey Poovannummoottil Jacob
  • Publication number: 20170243791
    Abstract: One illustrative method disclosed herein includes forming a gate structure above a portion of a fin and performing a first epitaxial growth process to form a silicon-carbide (SiC) semiconductor material above the fin in the source and drain regions of a FinFET device. In this example, the method also includes performing a heating process so as to form a source/drain graphene contact from the silicon-carbide (SiC) semiconductor material in both the source and drain regions of the FinFET device and forming first and second source/drain contact structures that are conductively coupled to the source/drain graphene contact in the source region and the drain region, respectively, of the FinFET device.
    Type: Application
    Filed: February 24, 2016
    Publication date: August 24, 2017
    Inventor: Ajey Poovannummoottil Jacob
  • Patent number: 9741622
    Abstract: One illustrative method disclosed herein includes, among other things, recessing first and second fins to define replacement fin cavities in a layer of insulating material, forming an initial strain relaxed buffer layer such that it only partially fills the replacement fin cavities, implanting carbon into the initial strain relaxed buffer layer in the NMOS region, forming a channel semiconductor material on the initial strain relaxed buffer layer within the replacement fin cavities in both the NMOS region and the PMOS region to thereby define an NMOS fin comprised of the channel semiconductor material and a carbon-doped strain relaxed buffer layer and a PMOS fin comprised of the channel semiconductor material and the initial strain relaxed buffer layer and forming gate structures for the NMOS and PMOS devices.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: August 22, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Ajey Poovannummoottil Jacob
  • Patent number: 9716174
    Abstract: A semiconductor stack of a FinFET in fabrication includes a bulk silicon substrate, a selectively oxidizable sacrificial layer over the bulk substrate and an active silicon layer over the sacrificial layer. Fins are etched out of the stack of active layer, sacrificial layer and bulk silicon. A conformal oxide deposition is made to encapsulate the fins, for example, using a HARP deposition. Relying on the sacrificial layer having a comparatively much higher oxidation rate than the active layer or substrate, selective oxidization of the sacrificial layer is performed, for example, by annealing. The presence of the conformal oxide provides structural stability to the fins, and prevents fin tilting, during oxidation. Selective oxidation of the sacrificial layer provides electrical isolation of the top active silicon layer from the bulk silicon portion of the fin, resulting in an SOI-like structure. Further fabrication may then proceed to convert the active layer to the source, drain and channel of the FinFET.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: July 25, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Murat Kerem Akarvardar, Jody A. Fronheiser, Ajey Poovannummoottil Jacob
  • Publication number: 20170194245
    Abstract: A method of providing on-chip capacitance includes providing a starting interconnect structure for semiconductor device(s), the starting interconnect structure including a layer of dielectric material. Vias of a same cross-sectional shape are formed in the layer of dielectric material having different and successive geometric cross-sectional size, and capacitors matching the via shape are formed in the vias. The geometric cross-sectional shapes include circles, squares, hexagons and octagons. For the non-circle shapes, a capacitance thereof is approximated by the capacitance of a coaxial capacitor fitting within and touching all sides of the non-circle shape multiplied by a correction factor of about 0.01 to about 2.
    Type: Application
    Filed: January 4, 2016
    Publication date: July 6, 2017
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Suraj PATIL, Ajey Poovannummoottil JACOB, Shesh Mani PANDEY
  • Patent number: 9698025
    Abstract: A method includes forming at least one fin on a semiconductor substrate. A hard mask layer is formed above the fin. A first directed self-assembly material is formed above the hard mask layer. The hard mask layer is patterned using a portion of the first directed self-assembly material as an etch mask to expose a portion of the top surface of the fin. A substantially vertical nanowire is formed on the exposed top surface. At least one dimension of the substantially vertical nanowire is defined by an intrinsic pitch of the first directed self-assembly material.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: July 4, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Steven Bentley, Richard A. Farrell, Gerard Schmid, Ajey Poovannummoottil Jacob
  • Patent number: 9673083
    Abstract: One illustrative method disclosed herein includes, among other things, forming a fin in a semiconductor substrate, the fin having a lower first section that contains an oxidation-retarding implant region and an upper second section that is substantially free of the oxidation-retarding implant region, forming a sidewall spacer on opposite sides of the upper portion of the fin, forming a first layer of insulating material adjacent the sidewall spacers and the upper second section of the lower portion of the fin, and, with the first layer of insulating material in position, performing a thermal anneal process to convert the portion of the upper second section of the fin that is in contact with the first layer of insulating material into an oxide fin isolation region positioned under the fin above the lower first section of the fin.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: June 6, 2017
    Assignees: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Ajey Poovannummoottil Jacob, Bruce Doris, Kangguo Cheng, Ali Khakifirooz, Kern Rim
  • Patent number: 9673222
    Abstract: Methods and semiconductor structures formed from the methods are provided which facilitate fabricating semiconductor fin structures. The methods include, for example: providing a wafer with at least one semiconductor fin extending above a substrate; transforming a portion of the semiconductor fin(s) into an isolation layer, the isolation layer separating a semiconductor layer of the semiconductor fin(s) from the substrate; and proceeding with forming a fin device(s) of a first architectural type in a first fin region of the semiconductor fin(s), and a fin device(s) of a second architectural type in a second fin region of the semiconductor fin(s), where the first architectural type and the second architectural type are different fin device architectures.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: June 6, 2017
    Assignees: GLOBALFOUNDRIES Inc., STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Ajey Poovannummoottil Jacob, Kangguo Cheng, Bruce Doris, Nicolas Loubet, Prasanna Khare, Rama Divakaruni
  • Publication number: 20170141227
    Abstract: One method disclosed includes forming first, second and third fins for a first NMOS device, a PMOS device and a second NMOS device, respectively. According to this method, the first fin consists entirely of the substrate material, the second and third fins comprise a lower substrate fin portion made of the substrate material and an upper fin portion made of a second semiconductor material and a third semiconductor material, respectively, wherein the second semiconductor material and the third semiconductor material are each different from the substrate material. The method also includes forming a semiconductor material cladding on the exposed upper portion of the third fin for the second NMOS FinFET device.
    Type: Application
    Filed: November 13, 2015
    Publication date: May 18, 2017
    Inventor: Ajey Poovannummoottil Jacob
  • Publication number: 20170141226
    Abstract: One illustrative method disclosed herein includes, among other things, forming first and second fins, respectively, for a PMOS device and an NMOS device, each of the first and second fins comprising a lower substrate fin portion made of the substrate material and an upper fin portion that is made of a second semiconductor material that is different from the substrate material, exposing at least a portion of the upper fin portion of both the first and second fins, masking the PMOS device and forming a semiconductor material cladding on the exposed upper portion of the second fin for the NMOS device, wherein the semiconductor material cladding is a different semiconductor material than that of the second semiconductor material. The method also including forming gate structures for the PMOS FinFET device and the NMOS FinFET device.
    Type: Application
    Filed: November 13, 2015
    Publication date: May 18, 2017
    Inventor: Ajey Poovannummoottil Jacob
  • Publication number: 20170125361
    Abstract: A semiconductor structure includes a dielectric layer, a silicidable metal layer and an undoped filler material layer are used to create an anti-efuse device. The anti-efuse device may be situated in a dielectric layer of an interconnect structure for a semiconductor device or may be planar. Where part of an interconnect structure, the anti-efuse device may be realized by causing a current to flow therethrough while applying local heating. Where planar, the filler material may be situated between extensions of metal pads and metal atoms caused to move from the extensions to the filler material layer using a current flow and local heating.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 4, 2017
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Suraj K. PATIL, Min-hwa CHI, Ajey Poovannummoottil JACOB
  • Patent number: 9634123
    Abstract: A method includes forming a fin on a semiconductor substrate. An isolation structure is formed adjacent the fin. A silicon alloy material is formed on a portion of the fin extending above the isolation structure. A thermal process is performed to define a silicon alloy fin portion from the silicon alloy material and the fin and to define a first insulating layer separating the fin from the substrate.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: April 25, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Ajey Poovannummoottil Jacob
  • Patent number: 9633947
    Abstract: A method includes forming a folding template in a first dielectric layer. The folding template has a plurality of surfaces that are positioned in different planes. A ballistic conductor line is formed on the plurality of surfaces of the folding template. A device includes a first dielectric layer and a vertically folded line disposed in the first dielectric layer, the vertically folded line including a ballistic conductor material.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: April 25, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Ajey Poovannummoottil Jacob
  • Patent number: 9627245
    Abstract: One illustrative method disclosed herein involves, among other things, forming trenches to form an initial fin structure having an initial exposed height and sidewalls, forming a protection layer on at least the sidewalls of the initial fin structure, extending the depth of the trenches to thereby define an increased-height fin structure, with a layer of insulating material over-filling the final trenches and with the protection layer in position, performing a fin oxidation thermal anneal process to convert at least a portion of the increased-height fin structure into an isolation material, removing the protection layer, and performing an epitaxial deposition process to form a layer of semiconductor material on at least portions of the initial fin structure.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: April 18, 2017
    Assignees: GLOBALFOUNDRIES Inc., International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: Ajey Poovannummoottil Jacob, Bruce Doris, Kangguo Cheng, Nicolas Loubet
  • Patent number: 9589849
    Abstract: One illustrative method disclosed herein includes, among other things, forming a plurality of initial fins that have the same initial axial length and the same initial strain above a substrate, performing at least one etching process so as to cut a first fin to a first axial length and to cut a second fin to a second axial length that is less than the first axial length, wherein the cut first fin retains a first amount of the initial strain and the cut second fin retains about zero of the initial strain or a second amount of the initial strain that is less than the first amount, and forming gate structures around the first and second cut fins to form FinFET devices.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: March 7, 2017
    Assignees: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Ajey Poovannummoottil Jacob, Murat Kerem Akarvardar, Bruce Doris, Ali Khakifirooz
  • Patent number: 9590040
    Abstract: One illustrative method disclosed herein includes, among other things, forming a sacrificial fin structure above a semiconductor substrate, forming a layer of insulating material around the sacrificial fin structure, removing the sacrificial fin structure so as to define a replacement fin cavity in the layer of insulating material that exposes an upper surface of the substrate, forming a replacement fin in the replacement fin cavity on the exposed upper surface of the substrate, recessing the layer of insulating material, and forming a gate structure around at least a portion of the replacement fin exposed above the recessed layer of insulating material.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: March 7, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Murat Kerem Akarvardar, Ajey Poovannummoottil Jacob