Patents by Inventor Amitava Majumdar

Amitava Majumdar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11290095
    Abstract: An integrated circuit can include one or more clock controllers. Each clock controller corresponds to a different clock signal of a set of one or more clock signals of the integrated circuit. Each clock controller is configured to implement a clock stretch mode that generates a modified clock signal having a frequency that is less than the clock signal. The integrated circuit can include a trigger circuit configured to enable selected ones of the one or more clock controllers to implement the clock stretch mode. The trigger circuit and the one or more clock controllers are hardwired and are programmable using control infrastructure circuitry of the integrated circuit.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: March 29, 2022
    Assignee: Xilinx, Inc.
    Inventors: Niravkumar Patel, Amitava Majumdar
  • Patent number: 11263377
    Abstract: A circuit architecture for expanded design for testability functionality is provided that includes an Intellectual Property (IP) core for use with a design for an integrated circuit (IC). The IP core provides an infrastructure harness circuit configured to control expanded design for testability functions available within the IC. An instance of the IP core can be included in a circuit block of the design for the IC. The infrastructure harness circuit can include an outward facing interface configured to connect to circuitry outside of the circuit block and an inward facing interface configured to connect to circuitry within the circuit block. The instance of the IP core can be parameterized to configure the infrastructure harness circuit to control a plurality of functions selected from the expanded design for testability functions based on a user parameterization of the instance of the IP core.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: March 1, 2022
    Assignee: Xilinx, Inc.
    Inventors: Amitava Majumdar, Albert Shih-Huai Lin, Partho Tapan Chaudhuri, Niravkumar Patel
  • Publication number: 20220020446
    Abstract: Methods, systems, and devices for leakage source detection are described. In some cases, a testing device may scan a first set of access lines of a memory die that have a first length and a second set of access lines of the memory die that have a second length different than the first length. The testing device may determine a first error rate associated with the first set of access lines and a second error rate associated with the second set of access lines. The testing device may categorize a performance of the memory die based on the first and second error rates. In some cases, the testing device may determine a third error rate associated with a type of error based on the first and second error rates and may categorize the performance of the memory die based on the third error rate.
    Type: Application
    Filed: July 28, 2021
    Publication date: January 20, 2022
    Inventors: Amitava Majumdar, Radhakrishna Kotti, Patrick Daniel White, Pavan Reddy K. Aella, Rajesh Kamana
  • Patent number: 11222695
    Abstract: Methods, systems, and devices supporting a socket design for a memory device are described. A die may include one or more memory arrays, which each may include any number of word lines and any number of bit lines. The word lines and the bit lines may be oriented in different directions, and memory cells may be located at the intersections of word lines and bit lines. Sockets may couple the word lines and bit lines to associated drivers, and the sockets may be located such that memory cells farther from a corresponding word line socket are nearer a corresponding bit line socket, and vice versa. For example, sockets may be disposed in rows or regions that are parallel to one another, and which may be non-orthogonal to the corresponding word lines and bit lines.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: January 11, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Radhakrishna Kotti, Rajasekhar Venigalla
  • Patent number: 11081203
    Abstract: Methods, systems, and devices for leakage source detection are described. In some cases, a testing device may scan a first set of access lines of a memory die that have a first length and a second set of access lines of the memory die that have a second length different than the first length. The testing device may determine a first error rate associated with the first set of access lines and a second error rate associated with the second set of access lines. The testing device may categorize a performance of the memory die based on the first and second error rates. In some cases, the testing device may determine a third error rate associated with a type of error based on the first and second error rates and may categorize the performance of the memory die based on the third error rate.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: August 3, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Radhakrishna Kotti, Patrick Daniel White, Pavan Reddy K Aella, Rajesh Kamana
  • Patent number: 11054461
    Abstract: Device(s) and method(s) related generally to a wafer or die stack are disclosed. In one such device, a die stack of two or more integrated circuit dies has associated therewith test circuits corresponding to each level of the die stack each with a set of pads. A test data-input path includes being from: a test data-in pad through a test circuit to a test data-out pad of each of the test circuits; and the test data-out pad to the test data-in pad between consecutive levels of the test circuits. Each of the set of pads includes the test data-in pad and the test data-out pad respectively thereof. A test data-output path is coupled to the test data-out pad of a level of the levels.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: July 6, 2021
    Assignee: XILINX, INC.
    Inventors: Nui Chong, Amitava Majumdar, Cheang-Whang Chang, Henley Liu, Myongseob Kim, Albert Shih-Huai Lin
  • Publication number: 20210166979
    Abstract: Methods, systems, and devices for electron beam probing techniques and related structures are described to enable inline testing of memory device structures. Conductive loops may be formed, some of which may be grounded and others of which may be electrically floating in accordance with a predetermined pattern. The loops may be scanned with an electron beam and image analysis techniques may be used to generate an optical pattern. The generated optical pattern may be compared to an expected optical pattern, which may be based on the predetermined pattern of grounded and floating loops. An electrical defect may be determined based on any difference between the generated optical pattern and the expected optical pattern. For example, if a second loop appears as having a brightness corresponding to a grounded loop, this may indicate that an unintended short exists. Fabrication techniques may be adjusted for subsequent devices to correct identified defects.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Inventors: Amitava Majumdar, Radhakrishna Kotti, Mallesh Rajashekharaiah
  • Publication number: 20210151119
    Abstract: Methods, systems, and devices for leakage source detection are described. In some cases, a testing device may scan a first set of access lines of a memory die that have a first length and a second set of access lines of the memory die that have a second length different than the first length. The testing device may determine a first error rate associated with the first set of access lines and a second error rate associated with the second set of access lines. The testing device may categorize a performance of the memory die based on the first and second error rates. In some cases, the testing device may determine a third error rate associated with a type of error based on the first and second error rates and may categorize the performance of the memory die based on the third error rate.
    Type: Application
    Filed: November 14, 2019
    Publication date: May 20, 2021
    Inventors: Amitava Majumdar, Radhakrishna Kotti, Patrick Daniel White, Pavan Reddy K. Aella, Rajesh Kamana
  • Publication number: 20210151105
    Abstract: Methods, systems, and devices supporting a socket design for a memory device are described. A die may include one or more memory arrays, which each may include any number of word lines and any number of bit lines. The word lines and the bit lines may be oriented in different directions, and memory cells may be located at the intersections of word lines and bit lines. Sockets may couple the word lines and bit lines to associated drivers, and the sockets may be located such that memory cells farther from a corresponding word line socket are nearer a corresponding bit line socket, and vice versa. For example, sockets may be disposed in rows or regions that are parallel to one another, and which may be non-orthogonal to the corresponding word lines and bit lines.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 20, 2021
    Inventors: Amitava Majumdar, Radhakrishna Kotti, Rajasekhar Venigalla
  • Publication number: 20210090246
    Abstract: A method of predicting virtual metrology data for a wafer lot that includes receiving first image data from an imager system, the first image data relating to at least one first wafer lot, receiving measured metrology data from metrology equipment relating to the at least one first wafer lot, applying one or more machine learning techniques to the first image data and the measured metrology data to generate at least one predictive model for predicting at least one of virtual metrology data or virtual cell metrics data of wafer lots, and utilizing the at least one generated predictive model to generate at least one of first virtual metrology data or first virtual cell metrics data for the first wafer lot.
    Type: Application
    Filed: December 10, 2020
    Publication date: March 25, 2021
    Inventors: Amitava Majumdar, Qianlan Liu, Pradeep Ramachandran, Shawn D. Lyonsmith, Steve K. McCandless, Ted L. Taylor, Ahmed N. Noemaun, Gordon A. Haller
  • Patent number: 10872403
    Abstract: A method of predicting virtual metrology data for a wafer lot that includes receiving first image data from an imager system, the first image data relating to at least one first wafer lot, receiving measured metrology data from metrology equipment relating to the at least one first wafer lot, applying one or more machine learning techniques to the first image data and the measured metrology data to generate at least one predictive model for predicting at least one of virtual metrology data or virtual cell metrics data of wafer lots, and utilizing the at least one generated predictive model to generate at least one of first virtual metrology data or first virtual cell metrics data for the first wafer lot.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: December 22, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Qianlan Liu, Pradeep Ramachandran, Shawn D. Lyonsmith, Steve K. McCandless, Ted L. Taylor, Ahmed N. Noemaun, Gordon A. Haller
  • Patent number: 10754759
    Abstract: An execution circuit inputs a plurality of data units, performs unit operations on the data units, and registers results of the unit operations in response to oscillations of a clock signal. A control circuit controls activation of the unit operations, and outputs a start signal to the execution circuit to activate each unit operation and/or a completion signal to indicate completion of each unit operation. A debug circuit stores breakpoint flags associated with the unit operations. Each breakpoint flag has a state that specifies whether to stop oscillations of the clock signal. The debug circuit further receives the start and/or completion signal and evaluates, while the clock signal oscillates to the execution circuit, a state of the start and/or completion signal and a state of the breakpoint flag associated with the unit operation. Oscillations of the clock signal are stopped in response to the evaluation of the signals.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: August 25, 2020
    Assignee: Xilinx, Inc.
    Inventors: Amitava Majumdar, Georgios Tzimpragos, Jason Villarreal, Kumar Deepak, Jayashree Rangarajan
  • Patent number: 10756711
    Abstract: Examples described herein provide determining skew of transistors on an integrated circuit. In an example, an integrated circuit includes a ring oscillator and first and second detector circuits. The ring oscillator includes serially connected buffers. Each buffer includes serially connected inverters that include transistors. A transistor of each buffer has a different strength of another transistor of the respective buffer. The first and second detector circuits are connected to different first and second tap nodes, respectively, along the serially connected buffers. The first detector circuit is configured to count a number of cycles of a reference clock that a cyclic signal on the first tap node is either a logically high or low level. The second detector circuit is configured to count a number of cycles of the reference clock that a cyclic signal on the second tap node is either a logically high or low level.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: August 25, 2020
    Assignee: XILINX, INC.
    Inventors: Amitava Majumdar, Nui Chong
  • Patent number: 10672500
    Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: June 2, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Patent number: 10650891
    Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: May 12, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Patent number: 10621067
    Abstract: An execution circuit is configured to input data units, perform unit operations on the data units, and register results of the unit operations in response to oscillations of a clock signal. A control circuit controls activation and deactivation of the unit operations. A debug circuit inputs, in parallel with input of the data units to the execution circuit, at least one of the data unit or one or more attributes associated with the data unit. The debug circuit evaluates, upon each input of the at least one of the data unit or the one or more attributes, a breakpoint condition based on the at least one of the data unit or the one or more attributes while the clock signal oscillates. In response to evaluation of the breakpoint condition indicating a break, the debug circuit stops oscillations of the clock signal to the execution circuit.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: April 14, 2020
    Assignee: Xilinx, Inc.
    Inventors: Georgios Tzimpragos, Jason Villarreal, Amitava Majumdar, Kumar Deepak, Yuxiong Zhu
  • Publication number: 20200051235
    Abstract: A method of predicting virtual metrology data for a wafer lot that includes receiving first image data from an imager system, the first image data relating to at least one first wafer lot, receiving measured metrology data from metrology equipment relating to the at least one first wafer lot, applying one or more machine learning techniques to the first image data and the measured metrology data to generate at least one predictive model for predicting at least one of virtual metrology data or virtual cell metrics data of wafer lots, and utilizing the at least one generated predictive model to generate at least one of first virtual metrology data or first virtual cell metrics data for the first wafer lot.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 13, 2020
    Inventors: Amitava Majumdar, Qianlan Liu, Pradeep Ramachandran, Shawn D. Lyonsmith, Steve K. McCandless, Ted L. Taylor, Ahmed N. Noemaun, Gordon A. Haller
  • Publication number: 20190355418
    Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 21, 2019
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Publication number: 20190341122
    Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 7, 2019
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Patent number: 10403359
    Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: September 3, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug