Patents by Inventor Anton Mauder

Anton Mauder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113705
    Abstract: A power switching assembly includes a first driver circuit and a second driver circuit. The first driver circuit is supplied via a first internal supply node and a first reference node and drives a first gate signal. The second driver circuit is supplied via a second internal supply node and a second reference node and drives a second gate signal. The first gate signal and the second gate signal are configured to be in phase with each other. The first reference node and the second reference node are separated. A first buffer capacitor is electrically connected between the first internal supply node and the first reference node. A second buffer capacitor electrically connected between the second internal supply node and the second reference node.
    Type: Application
    Filed: September 26, 2023
    Publication date: April 4, 2024
    Inventors: Anton Mauder, Massimo Grasso, Edward Fürgut
  • Publication number: 20240113053
    Abstract: The application relates to a power semiconductor device, including: a semiconductor body having a front side coupled to a frontside metallization and a backside coupled to a backside metallization; and an active region with a plurality of transistor cells. The frontside metallization includes a first load terminal structure and a control terminal structure. At least one of the first layer and the second layer is laterally segmented, with a first segment being part of the first load terminal structure and a second segment being part of the control terminal structure.
    Type: Application
    Filed: September 14, 2023
    Publication date: April 4, 2024
    Inventors: Andreas Korzenietz, Anton Mauder, Christoffer Erbert, Julia Zischang
  • Patent number: 11949006
    Abstract: A power semiconductor device includes: first and second trenches extending from a surface of a semiconductor body along a vertical direction and laterally confining a mesa region along a first lateral direction; source and body regions in the mesa region electrically connected to a first load terminal; and a first insulation layer having a plurality of insulation blocks, two of which laterally confine a contact hole. The first load terminal extends into the contact hole to contact the source and body regions at the mesa region surface. A first insulation block laterally overlaps with the first trench. A second insulation block laterally overlaps with the second trench. The first insulation block has a first lateral concentration profile of a first implantation material of the source region along the first lateral direction that is different from a corresponding second lateral concentration profile for the second insulation block.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: April 2, 2024
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Markus Beninger-Bina, Matteo Dainese, Ingo Dirnstorfer, Erich Griebl, Johannes Georg Laven, Anton Mauder, Hans-Joachim Schulze
  • Publication number: 20240063216
    Abstract: A semiconductor device includes: a transistor formed in a first semiconductor layer stack; a diode formed in a second semiconductor layer stack, the diode including an anode metal layer; and a carrier. The transistor and the diode are mounted to the carrier. A terminal of the transistor is electrically connected to the carrier, and the anode metal layer is in direct contact with the carrier.
    Type: Application
    Filed: August 3, 2023
    Publication date: February 22, 2024
    Inventors: Digvijay Raghunathan, Anton Mauder
  • Patent number: 11848377
    Abstract: A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: December 19, 2023
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Matteo Dainese, Elmar Falck, Franz-Josef Niedernostheide, Manfred Pfaffenlehner
  • Patent number: 11837528
    Abstract: A method of manufacturing a semiconductor device includes: forming a base portion of a bonding pad on a semiconductor portion, the base portion further comprising a base layer; forming a main surface of the bonding pad, the main surface comprising a bonding region; bonding a bond wire or clip to the bonding region; and forming a supplemental structure directly on the base portion. The supplemental structure laterally adjoins the bond wire or clip or is laterally spaced apart from the bond wire or clip. A volume-related specific heat capacity of the supplemental structure is higher than a volume-related specific heat capacity of the base layer.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: December 5, 2023
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze
  • Publication number: 20230307554
    Abstract: A power diode includes a semiconductor body having an anode region and a drift region, the semiconductor body being coupled to an anode metallization of the power diode and to a cathode metallization of the power diode, and an anode contact zone and an anode damage zone, both implemented in the anode region, the anode contact zone being arranged in contact with the anode metallization, and the anode damage zone being arranged in contact with and below the anode contact zone, wherein fluorine is included within each of the anode contact zone and the anode damage zone at a fluorine concentration of at least 1016 atoms*cm-3.
    Type: Application
    Filed: June 1, 2023
    Publication date: September 28, 2023
    Inventors: Anton Mauder, Mario Barusic, Markus Beninger-Bina, Matteo Dainese
  • Patent number: 11764296
    Abstract: A method for fabricating a semiconductor device includes: forming a trench in a first major surface of a semiconductor body having a first conductivity type; forming a gate in the trench; forming a body region of a second conductivity type in the semiconductor body; implanting a second dopant species into a first region of the body region and a first dopant species into a second region of the body region, the first dopant species providing the first conductivity type, the second dopant species being different from the first dopant species and reducing the diffusion of the first dopant species in the semiconductor body; and thermally annealing the semiconductor body to form a source region that includes the first and second dopant species, and to produce a pn-junction between the source and body regions at a depth dpn from the first major surface, wherein 50 nm<dpn<300 nm.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: September 19, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder
  • Publication number: 20230290885
    Abstract: A single chip power diode includes a semiconductor body having an anode region coupled to a first load terminal and a cathode region coupled to a second load terminal. An edge termination region surrounding an active region is terminated by a chip edge. The semiconductor body thickness is defined by a distance between at least one first interface area formed between the first load terminal and the anode region and a second interface area formed between the second load terminal and the cathode region. At least one inactive subregion is included in the active region. Each inactive subregion: has a blocking area with a minimal lateral extension of at least 20% of a drift region thickness; configured to prevent crossing of the load current between the first load terminal and the semiconductor body through the blocking area; and at least partially not arranged adjacent to the edge termination region.
    Type: Application
    Filed: April 19, 2023
    Publication date: September 14, 2023
    Inventors: Guang Zeng, Moritz Hauf, Anton Mauder
  • Publication number: 20230282736
    Abstract: A semiconductor die includes: a semiconductor substrate; transistor cells formed in a first region of the semiconductor substrate and electrically coupled in parallel to form a power transistor, the transistor cells including first trenches that extend from a first surface of the semiconductor substrate into the first region; a gate pad formed above the first surface and electrically connected to gate electrodes in the first trenches, the gate pad being formed over a second region of the semiconductor substrate that is devoid of functional transistor cells; second trenches extending from the first surface into the second region and including gate electrodes that are electrically connected to the gate pad and form a first conductor of an additional input capacitance of the power transistor; and a second conductor of the additional input capacitance formed in the second region adjacent the second trenches. Methods of producing the semiconductor die are also described.
    Type: Application
    Filed: March 4, 2022
    Publication date: September 7, 2023
    Inventors: Rabie Djemour, Hannes Mathias Geike, Anton Mauder
  • Patent number: 11735633
    Abstract: A silicon carbide device includes a silicon carbide body having a hexagonal crystal lattice with a c-plane and with further main planes. The further main planes include a-planes and m-planes. A mean surface plane of the silicon carbide body is tilted to the c-plane by an off-axis angle. The silicon carbide body includes a columnar portion with column sidewalls. At least three of the column sidewalls are oriented along a respective one of the further main planes. A trench gate structure is in contact with the at least three of the column sidewalls.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: August 22, 2023
    Assignee: Infineon Technologies AG
    Inventors: Ralf Siemieniec, Rudolf Elpelt, Anton Mauder
  • Patent number: 11728420
    Abstract: A power semiconductor device includes: a semiconductor body with a drift region; a plurality of trenches, wherein two adjacent trenches laterally confine a mesa of the semiconductor body. Each trench extends along a vertical direction and includes a trench electrode, and has a trench width along a first lateral direction and a trench length along a second lateral direction perpendicular to the first lateral direction, the trench length amounting to at least five times the trench width. The device further includes: a semiconductor body region of a second conductivity type in the mesa; a source region in the mesa; an insulation layer above and/or on the source region; a contact plug that extends at least from an upper surface of the insulation layer along the vertical direction so as to contact both the source region and the semiconductor body region.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: August 15, 2023
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Juergen Thees
  • Patent number: 11721616
    Abstract: A semiconductor package includes a die pad comprising a die attach surface, a first lead extending away from the die pad, one or more semiconductor dies mounted on the die attach surface, the one or more semiconductor dies comprising first and second bond pads that each face away from the die attach surface, and a distribution element that provides a first transmission path for a first electrical signal between the first lead and the first bond pad of the one or more semiconductor dies and a second transmission path for the first electrical signal between the first lead and the second bond pad of the one or more semiconductor dies. The distribution element comprises at least one integrally formed circuit element that creates a difference in transmission characteristics between the first and second transmission paths.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: August 8, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Stephan Voss, Edward Fuergut, Martin Gruber, Andreas Huerner, Anton Mauder
  • Publication number: 20230223472
    Abstract: A semiconductor assembly includes a semiconductor switching device, a conductive load base structure, and a current sense unit. The semiconductor switching device includes a drain structure and one or more array units, wherein each array unit includes a load pad and a plurality of transistor cells electrically connected in parallel between the load pad of the array unit and the drain structure. The current sense unit is electrically connected between a first one of the load pads and the load base structure.
    Type: Application
    Filed: January 10, 2023
    Publication date: July 13, 2023
    Inventors: Anton MAUDER, Stefano RUZZA, Massimo GRASSO, Richard KUCHCINSKI, Daniel DOMES
  • Patent number: 11695083
    Abstract: A method of processing a power diode includes: creating an anode region and a drift region in a semiconductor body; and forming, by a single ion implantation processing step, each of an anode contact zone and an anode damage zone in the anode region. Power diodes manufactured by the method are also described.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: July 4, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Mario Barusic, Markus Beninger-Bina, Matteo Dainese
  • Patent number: 11688732
    Abstract: A single chip power semiconductor device includes: first and second load terminals; a semiconductor body integrated in the single chip and coupled to the load terminals and configured to conduct a load current along a load current path between the load terminals; a control terminal and at least one control electrode electrically connected thereto, the at least one control electrode being electrically insulated from the semiconductor body and configured to control the load current based on a control voltage between the control terminal and the first load terminal; a protection structure integrated, separately from the load current path, in the single chip and including a series connection of pn junctions with first semiconductor regions of a first conductivity type and second semiconductor regions of a second conductivity type. The series connection of the pn-junctions is connected in forward bias between the control terminal and the first load terminal.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: June 27, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Guang Zeng, Anton Mauder, Joachim Weyers
  • Patent number: 11664464
    Abstract: A single chip power diode includes a semiconductor body having an anode region coupled to a first load terminal and a cathode region coupled to a second load terminal. An edge termination region surrounding an active region is terminated by a chip edge. The semiconductor body thickness is defined by a distance between at least one first interface area formed between the first load terminal and the anode region and a second interface area formed between the second load terminal and the cathode region. At least one inactive subregion is included in the active region. Each inactive subregion: has a blocking area with a minimal lateral extension of at least 20% of a drift region thickness; configured to prevent crossing of the load current between the first load terminal and the semiconductor body through the blocking area; and at least partially not arranged adjacent to the edge termination region.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: May 30, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Guang Zeng, Moritz Hauf, Anton Mauder
  • Publication number: 20230148156
    Abstract: A semiconductor component includes: a SiC semiconductor body; a trench extending from a first surface of the SiC semiconductor body into the SiC semiconductor body, the trench having a conductive connection structure, a structure width at a bottom of the trench, and a dielectric layer covering sidewalls of the trench; a shielding region along the bottom and having a central section which has a lateral first width; and a contact formed between the conductive connection structure and the shielding region. The conductive connection structure is electrically connected to a source electrode. In at least one doping plane extending approximately parallel to the bottom, a dopant concentration in the central section deviates by not more than 10% from a maximum value of the dopant concentration in the shielding region in the doping plane. The first width is less than the structure width and is at least 30% of the structure width.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 11, 2023
    Inventors: Andreas Peter Meiser, Caspar Leendertz, Anton Mauder
  • Patent number: 11600701
    Abstract: A silicon carbide substrate has a trench extending from a main surface of the silicon carbide substrate into the silicon carbide substrate. The trench has a trench width at a trench bottom. A shielding region is formed in the silicon carbide substrate. The shielding region extends along the trench bottom. In at least one doping plane extending approximately parallel to the trench bottom, a dopant concentration in the shielding region over a lateral first width deviates by not more than 10% from a maximum value of the dopant concentration. The first width is less than the trench width and is at least 30% of the trench width.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: March 7, 2023
    Assignee: Infineon Technologies AG
    Inventors: Andreas Peter Meiser, Caspar Leendertz, Anton Mauder
  • Patent number: 11552172
    Abstract: First dopants are implanted through a larger opening of a first process mask into a silicon carbide body, wherein the larger opening exposes a first surface section of the silicon carbide body. A trench is formed in the silicon carbide body in a second surface section exposed by a smaller opening in a second process mask. The second surface section is a sub-section of the first surface section. The larger opening and the smaller opening are formed self-aligned to each other. At least part of the implanted first dopants form at least one compensation layer portion extending parallel to a trench sidewall.
    Type: Grant
    Filed: July 11, 2020
    Date of Patent: January 10, 2023
    Assignee: Infineon Technologies AG
    Inventors: Caspar Leendertz, Romain Esteve, Moriz Jelinek, Anton Mauder, Hans-Joachim Schulze, Werner Schustereder