Patents by Inventor Anton Mauder

Anton Mauder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220406928
    Abstract: A semiconductor device includes a transistor cell with a source region of a first conductivity type and a gate electrode. The source region is formed in a wide bandgap semiconductor portion. A diode chain includes a plurality of diode structures. The diode structures are formed in the wide bandgap semiconductor portion and electrically connected in series. Each diode structure includes a cathode region of the first conductivity type and an anode region of a complementary second conductivity type. A gate metallization is electrically connected with the gate electrode and with a first one of the anode regions in the diode chain. A source electrode structure is electrically connected with the source region and with a last one of the cathode regions in the diode chain.
    Type: Application
    Filed: June 13, 2022
    Publication date: December 22, 2022
    Inventors: Joachim Weyers, Anton Mauder, Ralf Siemieniec, Guang Zeng
  • Publication number: 20220384305
    Abstract: A device includes an interposer including an insulative layer between a lower metal layer and a first upper metal layer and a second upper metal layer, a semiconductor transistor die attached to the first upper metal layer and comprising a first lower main face and a second upper main face, with a drain or collector pad on the first main face and electrically connected to the first upper metal layer, a source or emitter electrode pad and a gate electrode pad on the second main face, a leadframe connected to the interposer and comprising a first lead connected with the first upper metal layer, a second lead connected with the source electrode pad, and a third lead connected with the second upper metal layer, and wherein an electrical connector that is connected between the gate electrode pad and the second upper metal layer is orthogonal to a first electrical connector.
    Type: Application
    Filed: May 25, 2022
    Publication date: December 1, 2022
    Inventors: Edward Fuergut, Anton Mauder, Stephan Voss, Martin Gruber
  • Publication number: 20220359314
    Abstract: A semiconductor device includes a semiconductor portion with a first surface at a front side, wherein the semiconductor portion includes an active area, a termination structure laterally surrounding the active area, and a field-free region between the termination structure and a lateral outer surface of the semiconductor portion. The field-free region includes a probe contact region and a main portion. The probe contact region and the main portion form a semiconductor junction. A probe pad on the first surface and the probe contact region form an ohmic contact. A protection passivation layer on the first surface is formed on at least the termination structure and exposes the probe pad.
    Type: Application
    Filed: May 5, 2022
    Publication date: November 10, 2022
    Inventors: Rabie Djemour, Anton Mauder
  • Patent number: 11469317
    Abstract: An RC IGBT includes, in an active region, an IGBT section and at least three diode sections. The arrangement of the diode sections obeys a design rule.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: October 11, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Dieter Pfirsch, Erich Griebl, Viktoryia Lapidus, Anton Mauder, Christian Philipp Sandow, Antonio Vellei
  • Publication number: 20220262935
    Abstract: A voltage-controlled switching device includes a drain/drift region of a first conductivity type formed in a semiconductor portion. A channel region and the drain/drift region are in direct contact with each other. A source region of a second conductivity type and the channel region are in direct contact with each other. A gate electrode and the channel region are capacitively coupled and configured such that, in a an on-state of the voltage-controlled switching device, a first enhancement region of charge carriers corresponding to the first conductivity type forms in the channel region and band-to-band tunneling is facilitated between the source region and the first enhancement region.
    Type: Application
    Filed: February 10, 2022
    Publication date: August 18, 2022
    Inventors: Hans-Juergen Thees, Alim Karmous, Anton Mauder
  • Patent number: 11346880
    Abstract: A package-integrated power semiconductor device is provided, which includes at least one power transistor coupled to a current path, a current measurement device and a package. The current measurement device is electrically insulated from and magnetically coupled to the current path. The current path and the current measurement device are arranged so as to enable the current measurement device to sense the magnetic field of a current flowing through the current path. The at least one power transistor, the current measurement device, and the current path are arranged inside the package. Further, a power module assembly including the package-integrated power semiconductor device as well as a method of operating the package-integrated power semiconductor device are provided.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: May 31, 2022
    Inventors: Anton Mauder, Thomas Kimmer, Wolfgang Raberg, Mitja Rebec
  • Patent number: 11342187
    Abstract: Forming a semiconductor arrangement includes providing a first semiconductor layer having a first surface, forming a first plurality of trenches in the first surface of the first semiconductor layer, each of the trenches in the first plurality having first and second sidewalls that extend from the first surface to a bottom of the respective trench, implanting first type dopant atoms into the first and second sidewalls of each of the trenches in the first plurality, implanting second type dopant atoms into the first and second sidewalls of each of the trenches in the first plurality, and annealing the semiconductor arrangement to simultaneously activate the first type dopant atoms and the second type dopant atoms.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: May 24, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans Weber, Franz Hirler, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder, Maximilian Treiber, Daniel Tutuc, Andreas Voerckel
  • Patent number: 11302781
    Abstract: A semiconductor device includes a semiconductor body having a first surface and a second surface opposite to the first surface. A transistor structure is formed is the semiconductor body. A trench structure extends from the first surface into the semiconductor body. An electrostatic discharge protection structure is accommodated in the trench structure. The electrostatic discharge protection structure includes a first terminal region and a second terminal region. A source contact structure at the first surface is electrically connected to source regions of the transistor structure and to the first terminal region. A gate contact structure at the first surface is electrically connected to a gate electrode of the transistor structure and to the second terminal region.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: April 12, 2022
    Assignee: Infineon Technologies AG
    Inventors: Joachim Weyers, Stefan Gamerith, Franz Hirler, Anton Mauder
  • Publication number: 20220102478
    Abstract: A voltage-controlled switching device includes a drain/drift structure formed in a semiconductor portion with a lateral cross-sectional area AQ, a source/emitter terminal, and an emitter channel region between the drain/drift structure and the source/emitter terminal. A resistive path electrically connects the source/emitter terminal and the emitter channel region. The resistive path has an electrical resistance of at least 0.1 m?*cm2/AQ.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 31, 2022
    Inventors: Christian Philipp Sandow, Anton Mauder, Franz-Josef Niedernostheide
  • Patent number: 11276680
    Abstract: A temperature protected power semiconductor device has a substrate which includes a power field effect transistor (FET) and a thermosensitive element. The power FET has a gate electrode connected to a gate, a drift region, and first and second terminals for a load current. The load current is controllable during operation by a voltage applied between the gate and the first terminal. The thermosensitive element has a first contact connected to one of the gate electrode and first terminal of the power FET, and a second contact connected to the other one of the gate electrode and first terminal. The thermosensitive element is located close to the power FET and thermally coupled thereto. The thermosensitive element is configured to cause the power FET to reduce the load current in case of an exceedance of a limit temperature of the power FET, by interconnecting the gate and first terminal.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: March 15, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Daniel Pedone, Hans-Joachim Schulze, Rolf Gerlach, Christian Kasztelan, Anton Mauder, Hubert Rothleitner, Wolfgang Scholz, Philipp Seng, Peter Tuerkes
  • Patent number: 11276772
    Abstract: A power semiconductor transistor includes: a semiconductor body coupled to a load terminal; a drift region in the semiconductor body and having dopants of a first conductivity type; a first trench extending into the semiconductor body along a vertical direction and including a control electrode electrically insulated from the semiconductor body by an insulator; a second trench extending into the semiconductor body along the vertical direction; a mesa region arranged between the trenches and including a source region electrically connected to the load terminal and a channel region separating the source and drift regions; and a portion of a contiguous plateau region of a second conductivity type arranged in the semiconductor drift region and extending below the trenches and below the channel and source regions, the contiguous plateau region having a plurality of openings aligned below the channel region in a widthwise direction of the channel region.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: March 15, 2022
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Publication number: 20220059650
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminal structures, an active cell field in the body, and a plurality of first and second cells in the active cell field. Each cell is electrically connected to the first load terminal structure and to a drift region. Each first cell includes a mesa having a port region electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each second cell includes a mesa having a port region of the opposite conductivity type electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each mesa is spatially confined in a direction perpendicular to a direction of the load current within the respective mesa, by an insulation structure and has a total extension of less than 100 nm in the direction.
    Type: Application
    Filed: November 5, 2021
    Publication date: February 24, 2022
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Publication number: 20220029030
    Abstract: A single chip power diode includes a semiconductor body having an anode region coupled to a first load terminal and a cathode region coupled to a second load terminal. An edge termination region surrounding an active region is terminated by a chip edge. The semiconductor body thickness is defined by a distance between at least one first interface area formed between the first load terminal and the anode region and a second interface area formed between the second load terminal and the cathode region. At least one inactive subregion is included in the active region. Each inactive subregion: has a blocking area with a minimal lateral extension of at least 20% of a drift region thickness; configured to prevent crossing of the load current between the first load terminal and the semiconductor body through the blocking area; and at least partially not arranged adjacent to the edge termination region.
    Type: Application
    Filed: July 20, 2021
    Publication date: January 27, 2022
    Inventors: Guang Zeng, Moritz Hauf, Anton Mauder
  • Publication number: 20220029013
    Abstract: A method for fabricating a semiconductor device includes: forming a trench in a first major surface of a semiconductor body having a first conductivity type; forming a gate in the trench; forming a body region of a second conductivity type in the semiconductor body; implanting a second dopant species into a first region of the body region and a first dopant species into a second region of the body region, the first dopant species providing the first conductivity type, the second dopant species being different from the first dopant species and reducing the diffusion of the first dopant species in the semiconductor body; and thermally annealing the semiconductor body to form a source region that includes the first and second dopant species, and to produce a pn-junction between the source and body regions at a depth dpn from the first major surface, wherein 50 nm<dpn<300 nm.
    Type: Application
    Filed: October 5, 2021
    Publication date: January 27, 2022
    Inventors: Anton Mauder, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder
  • Publication number: 20220028980
    Abstract: A semiconductor device includes a trench structure extending from a first surface into a silicon carbide semiconductor body, the trench structure having a gate electrode that is dielectrically insulated from the semiconductor body, a shielding region adjoining a bottom of the trench structure and forming a first pn junction with a drift structure of the semiconductor body, a body region forming a second pn junction with the drift structure, a source zone arranged between the first surface and the body region and forming a third pn junction with the source zone, wherein a contact portion of the body region extends to the first surface, wherein the source zone surrounds the contact portion of the body region at the first surface, and wherein the trench structure forms an enclosed loop at the first surface that surrounds the source zone and the contact portion of the body region at the first surface.
    Type: Application
    Filed: October 7, 2021
    Publication date: January 27, 2022
    Inventors: Andreas Meiser, Caspar Leendertz, Anton Mauder, Roland Rupp
  • Publication number: 20220020876
    Abstract: A power semiconductor device includes: a semiconductor body with a drift region; a plurality of trenches, wherein two adjacent trenches laterally confine a mesa of the semiconductor body. Each trench extends along a vertical direction and includes a trench electrode, and has a trench width along a first lateral direction and a trench length along a second lateral direction perpendicular to the first lateral direction, the trench length amounting to at least five times the trench width. The device further includes: a semiconductor body region of a second conductivity type in the mesa; a source region in the mesa; an insulation layer above and/or on the source region; a contact plug that extends at least from an upper surface of the insulation layer along the vertical direction so as to contact both the source region and the semiconductor body region.
    Type: Application
    Filed: July 13, 2021
    Publication date: January 20, 2022
    Inventors: Anton Mauder, Hans-Juergen Thees
  • Publication number: 20210384111
    Abstract: A semiconductor package includes a die pad comprising a die attach surface, a first lead extending away from the die pad, one or more semiconductor dies mounted on the die attach surface, the one or more semiconductor dies comprising first and second bond pads that each face away from the die attach surface, and a distribution element that provides a first transmission path for a first electrical signal between the first lead and the first bond pad of the one or more semiconductor dies and a second transmission path for the first electrical signal between the first lead and the second bond pad of the one or more semiconductor dies. The distribution element comprises at least one integrally formed circuit element that creates a difference in transmission characteristics between the first and second transmission paths.
    Type: Application
    Filed: June 4, 2020
    Publication date: December 9, 2021
    Inventors: Stephan Voss, Edward Fuergut, Martin Gruber, Andreas Huerner, Anton Mauder
  • Patent number: 11195942
    Abstract: An embodiment of a semiconductor device includes a semiconductor mesa in an active device area. The semiconductor mesa includes source regions arranged along a longitudinal direction of the semiconductor mesa and separated from one another along the longitudinal direction. The semiconductor device further includes an electrode trench structure including a dielectric and an electrode. The electrode trench structure adjoins a side of the semiconductor mesa. The semiconductor device further includes an isolation trench structure filled with one or more insulating materials. The isolation trench structure extends through the semiconductor mesa and into or through the electrode trench structure along a first lateral direction.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: December 7, 2021
    Assignee: Infineon Technologies AG
    Inventors: Hans-Juergen Thees, Anton Mauder
  • Patent number: 11177354
    Abstract: A method of manufacturing a silicon carbide device includes: forming a trench in a process surface of a silicon carbide substrate that has a body layer forming second pn junctions with a drift layer structure, wherein the body layer is between the process surface and the drift layer structure and wherein the trench exposes the drift layer structure; implanting dopants through a bottom of the trench to form a shielding region that forms a first pn junction with the drift layer structure; forming dielectric spacers on sidewalls of the trench; and forming a buried portion of an auxiliary electrode in a bottom section of the trench, the buried portion adjoining the shielding region.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: November 16, 2021
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Caspar Leendertz, Anton Mauder, Roland Rupp
  • Patent number: 11171202
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminal structures, an active cell field in the body, and a plurality of first and second cells in the active cell field. Each cell is electrically connected to the first load terminal structure and to a drift region. Each first cell includes a mesa having a port region electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each second cell includes a mesa having a port region of the opposite conductivity type electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each mesa is spatially confined in a direction perpendicular to a direction of the load current within the respective mesa, by an insulation structure and has a total extension of less than 100 nm in the direction.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: November 9, 2021
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow