Patents by Inventor Armin Willmeroth

Armin Willmeroth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240194778
    Abstract: A semiconductor device includes: a semiconductor substrate having an active device region that includes a plurality of device cells and a termination region between the active device region and an edge of the semiconductor substrate; a field termination structure in the termination region and including a continuous region of a first conductivity type and a plurality of rings of the first conductivity type in the continuous region and having a higher average doping concentration than the continuous region; and a charge balance structure in the active device region and including interleaved columns of the first conductivity type and of a second conductivity type opposite the first conductivity type. The charge balance structure extends into the termination region below the field termination structure such that at least an outermost one of the columns of the first conductivity type is connected to the continuous region of the field termination structure.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 13, 2024
    Inventors: Michael Hell, Rudolf Elpelt, Frank Hille, Caspar Leendertz, Armin Willmeroth
  • Patent number: 12002804
    Abstract: A semiconductor device includes a semiconductor body, a vertical transistor arranged in a first device region of the semiconductor body, and a lateral transistor arranged in a second device region of the semiconductor body. The vertical transistor includes a plurality of drift regions of a first doping type and a plurality of compensation regions of a second doping type complementary to the first doping type. The drift regions and the compensation regions are arranged alternately in a lateral direction of the semiconductor body. The second device region includes a well-like structure of the second doping type surrounding a first semiconductor region of the first doping type. The lateral transistor includes device regions arranged in the first semiconductor region.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: June 4, 2024
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Peter Irsigler
  • Publication number: 20230145562
    Abstract: A semiconductor device includes: a semiconductor body having a first surface, a second surface opposite to the first surface in a vertical direction, an active region, and a sensor region arranged adjacent to the active region in a horizontal direction; transistor cells at least partly integrated in the active region, each transistor cell including a drift region separated from a source region by a body region, and a gate electrode dielectrically insulated from the body region; at least one sensor cell at least partly integrated in the sensor region, each sensor cell including a drift region separated from a source region by a body region, and a gate electrode dielectrically insulated from the body region; and an intermediate region arranged between the active region and the sensor region, the intermediate region including a drift region and an undoped semiconductor region extending from the first surface into the drift region.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 11, 2023
    Inventors: Markus Wiesinger, Katarzyna Kowalik-Seidl, Armin Tilke, Armin Willmeroth
  • Patent number: 11527608
    Abstract: A method for forming a superjunction transistor device includes: forming a plurality of semiconductor layers one on top of the other; implanting dopant atoms of a first doping type into each semiconductor layer to form first implanted regions in each semiconductor layer; implanting dopant atoms of a second doping type into each semiconductor layer to form second implanted regions in each semiconductor layer. Each of implanting the dopant atoms of the first and second doping types into each semiconductor layer includes forming a respective implantation mask on a respective surface of each semiconductor layer, and at least one of forming the first implanted regions and the second implanted regions in at least one of the semiconductor layers includes a tilted implantation process which uses an implantation vector that is tilted by a tilt angle relative to a normal of the respective horizontal surface of the respective semiconductor layer.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: December 13, 2022
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Franz Hirler, Wolfgang Jantscher, Yann Ruet, Armin Willmeroth
  • Patent number: 11329126
    Abstract: In an embodiment, a method of fabricating a superjunction semiconductor device includes implanting first ions into a first region of a first epitaxial layer using a first implanting apparatus and nominal implant conditions to produce a first region in the first epitaxial layer comprising the first ions and a first implant characteristic and implanting second ions into a second region of the first epitaxial layer, the second region being laterally spaced apart from the first region, using second nominal implanting conditions estimated to produce a second region in the first epitaxial layer having the second ions and a second implant characteristic that lies within an acceptable maximum difference of the first implant characteristic.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: May 10, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Tilke, Hans Weber, Christian Fachmann, Roman Knoefler, Gabor Mezoesi, Manfred Pippan, Thomas Rupp, Michael Treu, Armin Willmeroth
  • Patent number: 11309434
    Abstract: A semiconductor device includes a layer stack with a plurality of first semiconductor layers of a first doping type and a plurality of second semiconductor layers of a second doping type complementary to the first doping type. A first semiconductor region of a first semiconductor device adjoins the first semiconductor layers. Each second semiconductor region of the first semiconductor device adjoins at least one of the second semiconductor layers, and is spaced apart from the first semiconductor region. A third semiconductor layer adjoins the layer stack and each first semiconductor region and each second semiconductor region. The third semiconductor layer includes a first region arranged between the first semiconductor region and the second semiconductor region in a first direction. A third semiconductor region of the first or the second doping type extends from a first surface of the third semiconductor layer into the first region.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: April 19, 2022
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Ahmed Mahmoud, Rolf Weis, Armin Willmeroth
  • Publication number: 20210193796
    Abstract: A method for forming a superjunction transistor device includes: forming a plurality of semiconductor layers one on top of the other; implanting dopant atoms of a first doping type into each semiconductor layer to form first implanted regions in each semiconductor layer; implanting dopant atoms of a second doping type into each semiconductor layer to form second implanted regions in each semiconductor layer. Each of implanting the dopant atoms of the first and second doping types into each semiconductor layer includes forming a respective implantation mask on a respective surface of each semiconductor layer, and at least one of forming the first implanted regions and the second implanted regions in at least one of the semiconductor layers includes a tilted implantation process which uses an implantation vector that is tilted by a tilt angle relative to a normal of the respective horizontal surface of the respective semiconductor layer.
    Type: Application
    Filed: March 8, 2021
    Publication date: June 24, 2021
    Inventors: Franz Hirler, Wolfgang Jantscher, Yann Ruet, Armin Willmeroth
  • Patent number: 10971582
    Abstract: A method for forming a superjunction transistor device includes: forming a plurality of semiconductor layers one on top of the other; implanting dopant atoms of a first doping type into each semiconductor layer to form first implanted regions in each semiconductor layer; implanting dopant atoms of a second doping type into each semiconductor layer to form second implanted regions in each semiconductor layer. Each of implanting the dopant atoms of the first and second doping types into each semiconductor layer includes forming a respective implantation mask on a respective surface of each semiconductor layer, and at least one of forming the first implanted regions and the second implanted regions in at least one of the semiconductor layers includes a tilted implantation process which uses an implantation vector that is tilted by a tilt angle relative to a normal of the respective horizontal surface of the respective semiconductor layer.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: April 6, 2021
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Franz Hirler, Wolfgang Jantscher, Yann Ruet, Armin Willmeroth
  • Patent number: 10950691
    Abstract: A power converter circuit includes an inductor and rectifier circuit having an inductor connected in series with an electronic switch, and a rectifier circuit, and a controller for generating a drive signal for driving the electronic switch. The electronic switch has drain, source and gate nodes, drift and compensation cells each including a drift region of a first doping type and a compensation region of a second doping type, and a control structure connected between the drift region of each of the drift and compensation cells and the source node. Each drift region is coupled to the drain node and each compensation region cells is coupled to the source node. A first type doping concentration N1 of the drift region is higher than a first doping level L1, and a second type doping concentration N2 of the compensation region is higher than a second doping level L2.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: March 16, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Giulio Fragiacomo, Bjoern Fischer, Rene Mente, Armin Willmeroth
  • Publication number: 20210020626
    Abstract: A half-bridge circuit includes a low-side transistor and a high-side transistor each having a load path and a control terminal, and a high-side drive circuit having a level shifter with a level shifter transistor. The low-side transistor and the level shifter transistor are integrated in a common semiconductor body.
    Type: Application
    Filed: October 7, 2020
    Publication date: January 21, 2021
    Inventors: Armin Willmeroth, Franz Hirler, Peter Irsigler
  • Patent number: 10833066
    Abstract: A half-bridge circuit includes a low-side transistor and a high-side transistor each having a load path and a control terminal, and a high-side drive circuit having a level shifter with a level shifter transistor. The low-side transistor and the level shifter transistor are integrated in a common semiconductor body.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: November 10, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Peter Irsigler
  • Publication number: 20200295202
    Abstract: A semiconductor device includes a layer stack with a plurality of first semiconductor layers of a first doping type and a plurality of second semiconductor layers of a second doping type complementary to the first doping type. A first semiconductor region of a first semiconductor device adjoins the first semiconductor layers. Each second semiconductor region of the first semiconductor device adjoins at least one of the second semiconductor layers, and is spaced apart from the first semiconductor region. A third semiconductor layer adjoins the layer stack and each first semiconductor region and each second semiconductor region. The third semiconductor layer includes a first region arranged between the first semiconductor region and the second semiconductor region in a first direction. A third semiconductor region of the first or the second doping type extends from a first surface of the third semiconductor layer into the first region.
    Type: Application
    Filed: March 11, 2020
    Publication date: September 17, 2020
    Inventors: Ahmed Mahmoud, Rolf Weis, Armin Willmeroth
  • Publication number: 20200044019
    Abstract: A method for forming a superjunction transistor device includes: forming a plurality of semiconductor layers one on top of the other; implanting dopant atoms of a first doping type into each semiconductor layer to form first implanted regions in each semiconductor layer; implanting dopant atoms of a second doping type into each semiconductor layer to form second implanted regions in each semiconductor layer. Each of implanting the dopant atoms of the first and second doping types into each semiconductor layer includes forming a respective implantation mask on a respective surface of each semiconductor layer, and at least one of forming the first implanted regions and the second implanted regions in at least one of the semiconductor layers includes a tilted implantation process which uses an implantation vector that is tilted by a tilt angle relative to a normal of the respective horizontal surface of the respective semiconductor layer.
    Type: Application
    Filed: July 24, 2019
    Publication date: February 6, 2020
    Inventors: Franz Hirler, Wolfgang Jantscher, Yann Ruet, Armin Willmeroth
  • Publication number: 20200044020
    Abstract: A power converter circuit includes an inductor and rectifier circuit having an inductor connected in series with an electronic switch, and a rectifier circuit, and a controller for generating a drive signal for driving the electronic switch. The electronic switch has drain, source and gate nodes, drift and compensation cells each including a drift region of a first doping type and a compensation region of a second doping type, and a control structure connected between the drift region of each of the drift and compensation cells and the source node. Each drift region is coupled to the drain node and each compensation region cells is coupled to the source node. A first type doping concentration N1 of the drift region is higher than a first doping level L1, and a second type doping concentration N2 of the compensation region is higher than a second doping level L2.
    Type: Application
    Filed: October 11, 2019
    Publication date: February 6, 2020
    Inventors: Giulio Fragiacomo, Bjoern Fischer, Rene Mente, Armin Willmeroth
  • Publication number: 20200027949
    Abstract: A switched-mode power supply includes a power semiconductor device that includes a semiconductor body comprising transistor cells and a drift zone between a drain layer and the transistor cells, the transistor cells comprising source zones, wherein the device exhibits a first output charge gradient when a voltage between the drain layer and the source zones of the transistor cells increases from a depletion voltage of the semiconductor device to a maximum drain/source voltage of the semiconductor device, wherein the device exhibits a second output charge gradient when a voltage between the drain layer and the source zones of the semiconductor device decreases from the maximum drain/source voltage to the depletion voltage of the semiconductor device, and wherein the semiconductor device is configured such that the first output charge gradient deviates by less than 5% from the second output charge gradient.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Inventors: Armin Willmeroth, Franz Hirler, Bjoern Fischer, Joachim Weyers
  • Patent number: 10516065
    Abstract: A semiconductor device includes an anode doping region of a diode structure arranged in a semiconductor substrate. The anode doping region has a first conductivity type. The semiconductor device further includes a second conductivity type contact doping region having a second conductivity type. The second conductivity type contact doping region is arranged at a surface of the semiconductor substrate and surrounded in the semiconductor substrate by the anode doping region. The anode doping region includes a buried non-depletable portion. At least part of the buried non-depletable portion is located below the second conductivity type contact doping region in the semiconductor substrate.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: December 24, 2019
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Frank Dieter Pfirsch, Hans-Joachim Schulze, Philipp Seng, Armin Willmeroth
  • Patent number: 10490656
    Abstract: A charge-compensation semiconductor device includes a source metallization spaced apart from a gate metallization, and a semiconductor body including opposing first and second sides, a drift region, a plurality of body regions adjacent the first side and each forming a respective first pn-junction with the drift region, and a plurality of compensation regions arranged between the second side and the body regions. Each compensation region forms a respective further pn-junction with the drift region. A plurality of gate electrodes in Ohmic connection with the gate metallization is arranged adjacent the first side and separated from the body regions and the drift region by a dielectric region. A resistive current path is formed between one of the gate electrodes and a first one of the compensation regions, or between the first one of the compensation regions and a further metallization spaced apart from the source metallization and the gate metallization.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: November 26, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Anton Mauder, Frank Dieter Pfirsch, Hans-Joachim Schulze, Uwe Wahl
  • Patent number: 10475880
    Abstract: A transistor device includes drain, source and gate nodes, a plurality of drift and compensation cells each including a drift region of a first doping type and a compensation region of a second doping type complementary to the first doping type, and a control structure connected between the drift region of each of the drift and compensation cells and the source node. Each drift region is coupled to the drain node and each compensation region cells is coupled to the source node. A first type doping concentration N1 of the drift region is higher than a first doping level L1, and a second type doping concentration N2 of the compensation region is higher than a second doping level L2.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: November 12, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Giulio Fragiacomo, Armin Willmeroth, Bjoern Fischer, Rene Mente
  • Patent number: 10468479
    Abstract: A semiconductor device includes a semiconductor body, which includes transistor cells and a drift zone between a drain layer and the transistor cells. The drift zone includes a compensation structure. Above a depletion voltage a first output charge gradient obtained by increasing a drain-to-source voltage from the depletion voltage to a maximum drain-to-source voltage deviates by less than 5% from a second output charge gradient obtained by decreasing the drain-to-source voltage from the maximum drain-to-source voltage to the depletion voltage. At the depletion voltage the first output charge gradient exhibits a maximum curvature.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: November 5, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Bjoern Fischer, Joachim Weyers
  • Patent number: RE47710
    Abstract: A power semiconductor element having a lightly doped drift and buffer layer is disclosed. One embodiment has, underneath and between deep well regions of a first conductivity type, a lightly doped drift and buffer layer of a second conductivity type. The drift and buffer layer has a minimum vertical extension between a drain contact layer on the adjacent surface of a semiconductor substrate and the bottom of the deepest well region which is at least equal to a minimum lateral distance between the deep well regions. The vertical extension can also be determined such that a total amount of dopant per unit area in the drift and buffer layer is larger than a breakdown charge amount at breakdown voltage.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: November 5, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Markus Zundel, Franz Hirler, Armin Willmeroth