Patents by Inventor Armin Willmeroth

Armin Willmeroth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150084120
    Abstract: An active area of a semiconductor body includes a first charge-compensation structure having spaced apart n-type pillar regions, and an n-type first field-stop region of a semiconductor material in Ohmic contact with a drain metallization and the n-type pillar regions and having a doping charge per area higher than a breakdown charge per area of the semiconductor material. A punch-through area of the semiconductor body includes a p-type semiconductor region in Ohmic contact with a source metallization, a floating p-type body region and an n-type second field-stop region. The floating p-type body region extends into the active area. The second field-stop region is in Ohmic contact with the first field-stop region, forms a pn-junction with the floating p-type body region, is arranged between the p-type semiconductor region and floating p-type body region, and has a doping charge per area lower than the breakdown charge per area of the semiconductor material.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 26, 2015
    Inventors: Hans Weber, Franz Hirler, Armin Willmeroth, Stefan Gamerith
  • Patent number: 8975136
    Abstract: A super junction semiconductor device includes a semiconductor portion with a first surface and a parallel second surface. A doped layer of a first conductivity type is formed at least in a cell area. Columnar first super junction regions of a second, opposite conductivity type extend in a direction perpendicular to the first surface. Columnar second super junction regions of the first conductivity type separate the first super junction regions from each other. The first and second super junction regions form a super junction structure between the first surface and the doped layer. A distance between the first super junction regions and the second surface does not exceed 30 ?m. The on-state or forward resistance of low-voltage devices rated for reverse breakdown voltages below 1000 V can be defined by the resistance of the super junction structure.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: March 10, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Hans-Joachim Schulze, Uwe Wahl, Winfried Kaindl
  • Patent number: 8970262
    Abstract: Disclosed is a semiconductor device arrangement including a first semiconductor device having a load path, and a plurality of second transistors, each having a load path between a first and a second load terminal and a control terminal. The second transistors have their load paths connected in series and connected in series to the load path of the first transistor, each of the second transistors has its control terminal connected to the load terminal of one of the other second transistors, and one of the second transistors has its control terminal connected to one of the load terminals of the first semiconductor device.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: March 3, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Rolf Weis, Franz Hirler, Martin Feldtkeller, Gerald Deboy, Matthias Stecher, Armin Willmeroth
  • Publication number: 20150056782
    Abstract: According to an embodiment, a super junction semiconductor device may be manufactured by introducing impurities of a first impurity type into an exposed surface of a first semiconductor layer of the first impurity type, thus forming an implant layer. A second semiconductor layer of the first impurity type may be provided on the exposed surface and trenches may be etched through the second semiconductor layer into the first semiconductor layer. Thereby first columns with first overcompensation zones obtained from the implant layer are formed between the trenches. Second columns of the second conductivity type may be provided in the trenches. The first and second columns form a super junction structure with a vertical first section in which the first overcompensation zones overcompensate a corresponding section in the second columns.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 26, 2015
    Inventors: Armin Willmeroth, Franz Hirler, Uwe Wahl
  • Patent number: 8963245
    Abstract: An integrated circuit and component is disclosed. In one embodiment, the component is a compensation component, configuring the compensation regions in the drift zone in V-shaped fashion in order to achieve a convergence of the space charge zones from the upper to the lower end of the compensation regions is disclosed.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: February 24, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Holger Kapels
  • Publication number: 20150041915
    Abstract: A semiconductor device arrangement includes a first semiconductor device having a load path and a plurality of second semiconductor devices, each having a load path between a first and a second load terminal and a control terminal. The second semiconductor devices have their load paths connected in series and connected in series to the load path of the first semiconductor device. Each of the second semiconductor devices has its control terminal connected to the load terminal of one of the other second semiconductor devices, and one of the second semiconductor devices has its control terminal connected to one of the load terminals of the first semiconductor device. Each of the second semiconductor devices has at least one device characteristic. At least one device characteristic of at least one of the second semiconductor devices is different from the corresponding device characteristic of others of the second semiconductor devices.
    Type: Application
    Filed: January 30, 2013
    Publication date: February 12, 2015
    Inventors: Rolf Weis, Michael Treu, Gerald Deboy, Armin Willmeroth, Hans Weber
  • Patent number: 8952478
    Abstract: A radiation conversion device such as a photovoltaic cell, a photodiode or a semiconductor radiation detection device, includes a semiconductor portion with first compensation zones of a first conductivity type and a base portion that separates the first compensation zones from each other. The first compensations zones are arranged in pillar structures. Each pillar structure includes spatially separated first compensation zones and extends in a vertical direction with respect to a main surface of the semiconductor portion. Between neighboring ones of the pillar structures the base portion includes second compensation zones of a second conductivity type, which is complementary to the first conductivity type. The radiation conversion device combines high radiation hardness with cost effective manufacturing.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: February 10, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Hans-Joachim Schulze
  • Patent number: 8941188
    Abstract: A semiconductor arrangement includes a semiconductor body and a power transistor arranged in a first device region of the semiconductor body. The power transistor includes at least one source region, a drain region, and at least one body region, at least one drift region of a first doping type and at least one compensation region of a second doping complementary to the first doping type, and a gate electrode arranged adjacent to the at least one body region and dielectrically insulated from the body region by a gate dielectric. The semiconductor arrangement also includes a further semiconductor device arranged in a second device region of the semiconductor body. The second device region includes a well-like structure of the second doping type surrounding a first semiconductor region of the first doping type. The further semiconductor device includes device regions arranged in the first semiconductor region.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: January 27, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Peter Irsigler
  • Publication number: 20150021670
    Abstract: A field-effect semiconductor device includes a semiconductor body having a first surface and an edge, an active area, and a peripheral area between the active area and the edge, a source metallization on the first surface and a drain metallization. In the active area, first conductivity type drift portions alternate with second conductivity type compensation regions. The drift portions contact the drain metallization and have a first maximum doping concentration. The compensation regions are in Ohmic contact with the source metallization. The peripheral area includes a first edge termination region and a second semiconductor region in Ohmic contact with the drift portions having a second maximum doping of the first conductivity type which lower than the first maximum doping concentration by a factor of ten. The first edge termination region of the second conductivity type adjoins the second semiconductor region and is in Ohmic contact with the source metallization.
    Type: Application
    Filed: November 15, 2013
    Publication date: January 22, 2015
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Anton Mauder, Joachim Weyers, Franz Hirler, Markus Schmitt, Armin Willmeroth, Björn Fischer, Stefan Gamerith
  • Publication number: 20150008480
    Abstract: A semiconductor component is disclosed. One embodiment provides a semiconductor body having a cell region with at least one zone of a first conduction type and at least one zone of a second conduction type in a rear side. A drift zone of the first conduction type in the cell region is provided. The drift zone contains at least one region through which charge carriers flow in an operating mode of the semiconductor component in one polarity and charge carriers do not flow in an operating mode of the semiconductor component in an opposite polarity.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Inventors: Holger Ruething, Frank Pfirsch, Armin Willmeroth, Frank Hille, Hans-Joachim Schulze
  • Patent number: 8901623
    Abstract: According to an embodiment, a super junction semiconductor device may be manufactured by introducing impurities of a first impurity type into an exposed surface of a first semiconductor layer of the first impurity type, thus forming an implant layer. A second semiconductor layer of the first impurity type may be provided on the exposed surface and trenches may be etched through the second semiconductor layer into the first semiconductor layer. Thereby first columns with first overcompensation zones obtained from the implant layer are formed between the trenches. Second columns of the second conductivity type may be provided in the trenches. The first and second columns form a super junction structure with a vertical first section in which the first overcompensation zones overcompensate a corresponding section in the second columns.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: December 2, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Uwe Wahl
  • Publication number: 20140332885
    Abstract: A lateral trench transistor has a semiconductor body having a source region, a source contact, a body region, a drain region, and a gate trench, in which a gate electrode which is isolated from the semiconductor body is embedded. A heavily doped semiconductor region is provided within the body region or adjacent to it, and is electrically connected to the source contact, and whose dopant type corresponds to that of the body region.
    Type: Application
    Filed: July 30, 2014
    Publication date: November 13, 2014
    Inventors: Franz Hirler, Uwe Wahl, Thorsten Meyer, Michael Rüb, Armin Willmeroth, Markus Schmitt, Carolin Tolksdorf, Carsten Schaeffer
  • Publication number: 20140327104
    Abstract: A super junction semiconductor device includes a layered compensation structure with an n-type compensation layer and a p-type compensation layer, a dielectric layer facing the p-type layer, and an intermediate layer interposed between the dielectric layer and the p-type compensation layer. The layered compensation structure and the intermediate layer are provided such that when a reverse blocking voltage is applied between the n-type and p-type compensation layers, holes accelerated in the direction of the dielectric layer have insufficient energy to be absorbed and incorporated into the dielectric material. Since the dielectric layer absorbs and incorporates significantly less holes than without the intermediate layer, the breakdown voltage remains stable over a long operation time.
    Type: Application
    Filed: May 1, 2013
    Publication date: November 6, 2014
    Inventors: Armin Willmeroth, Stefan Gamerith, Markus Schmitt, Bjoern Fischer
  • Publication number: 20140327069
    Abstract: A super junction structure is formed in a semiconductor portion of a super junction semiconductor device. The super junction structure includes a compensation structure with a first compensation layer of a first conductivity type and a second compensation layer of a complementary second conductivity type. The compensation structure lines at least sidewall portions of compensation trenches that extend between semiconductor mesas along a vertical direction perpendicular to a first surface of the semiconductor portion. Within the super junction structure and a pedestal layer that may adjoin the super junction structure, a sign of a lateral compensation rate changes along the vertical direction resulting in a local peak of a vertical electric field gradient and to improved avalanche ruggedness.
    Type: Application
    Filed: May 1, 2013
    Publication date: November 6, 2014
    Inventors: Armin Willmeroth, Markus Schmitt, Winfried Kaindl, Hans Weber
  • Publication number: 20140327070
    Abstract: A super junction semiconductor device includes strip structures between mesa regions that protrude from a base section in a cell area. Each strip structure includes a compensation structure with a first and a second section inversely provided on opposing sides of a fill structure. Each section includes a first compensation layer of a first conductivity type and a second compensation layer of a complementary second conductivity type. The strip structures extend into an edge area surrounding the cell area. In the edge area the strip structures include end sections. The end sections may be modified to enhance break down voltage characteristics, avalanche ruggedness and commutation behavior.
    Type: Application
    Filed: May 1, 2013
    Publication date: November 6, 2014
    Inventors: Franz Hirler, Hans Weber, Stefan Gamerith, Armin Willmeroth
  • Publication number: 20140327068
    Abstract: A super junction semiconductor device comprises a semiconductor portion with mesa regions protruding from a base section. The mesa regions are spatially separated in a lateral direction parallel to a first surface of the semiconductor portion. A compensation structure with at least two first compensation layers of a first conductivity type and at least two second compensation layers of a complementary second conductivity type may cover sidewalls of the mesa regions and portions of the base section between the mesa regions. Buried lateral faces of segments of the compensation structure may cut the first and second compensation layers between the mesa regions. A drain connection structure of the first conductivity type may extend along the buried lateral faces and may structurally connect the first compensation layers in an economic way keeping the thermal budget low.
    Type: Application
    Filed: May 1, 2013
    Publication date: November 6, 2014
    Inventors: Stefan Gamerith, Armin Willmeroth, Franz Hirler
  • Publication number: 20140319641
    Abstract: A radiation conversion device such as a photovoltaic cell, a photodiode or a semiconductor radiation detection device, includes a semiconductor portion with first compensation zones of a first conductivity type and a base portion that separates the first compensation zones from each other. The first compensations zones are arranged in pillar structures. Each pillar structure includes spatially separated first compensation zones and extends in a vertical direction with respect to a main surface of the semiconductor portion. Between neighboring ones of the pillar structures the base portion includes second compensation zones of a second conductivity type, which is complementary to the first conductivity type. The radiation conversion device combines high radiation hardness with cost effective manufacturing.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 30, 2014
    Inventors: Armin Willmeroth, Hans-Joachim Schulze
  • Patent number: 8866253
    Abstract: A semiconductor device arrangement includes a first semiconductor device having a load path and a plurality of second semiconductor devices, each having a load path between a first and a second load terminal and a control terminal. The second semiconductor devices have their load paths connected in series and connected in series to the load path of the first semiconductor device. Each of the second semiconductor devices has its control terminal connected to the load terminal of one of the other second semiconductor devices, and one of the second semiconductor devices has its control terminal connected to one of the load terminals of the first semiconductor device. Each of the second semiconductor devices has at least one device characteristic. At least one device characteristic of at least one of the second semiconductor devices is different from the corresponding device characteristic of others of the second semiconductor devices.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: October 21, 2014
    Assignee: Infineon Technologies Dresden GmbH
    Inventors: Rolf Weis, Gerald Deboy, Michael Treu, Armin Willmeroth, Hans Weber
  • Patent number: 8860133
    Abstract: A semiconductor component is disclosed. One embodiment provides a semiconductor body having a cell region with at least one zone of a first conduction type and at least one zone of a second conduction type in a rear side. A drift zone of the first conduction type in the cell region is provided. The drift zone contains at least one region through which charge carriers flow in an operating mode of the semiconductor component in one polarity and charge carriers do not flow in an operating mode of the semiconductor component in an opposite polarity.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: October 14, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Holger Ruething, Frank Pfirsch, Armin Willmeroth, Frank Hille, Hans-Joachim Schulze
  • Patent number: RE45449
    Abstract: A power semiconductor element having a lightly doped drift and buffer layer is disclosed. One embodiment has, underneath and between deep well regions of a first conductivity type, a lightly doped drift and buffer layer of a second conductivity type. The drift and buffer layer has a minimum vertical extension between a drain contact layer on the adjacent surface of a semiconductor substrate and the bottom of the deepest well region which is at least equal to a minimum lateral distance between the deep well regions. The vertical extension can also be determined such that a total amount of dopant per unit area in the drift and buffer layer is larger than a breakdown charge amount at breakdown voltage.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: April 7, 2015
    Assignee: Infineon Technologies AG
    Inventors: Markus Zundel, Franz Hirler, Armin Willmeroth