Patents by Inventor Armin Willmeroth

Armin Willmeroth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100078775
    Abstract: A semiconductor device has a cell field with drift zones of a first type of conductivity and charge carrier compensation zones of a second type of conductivity complementary to the first type. An edge region which surrounds the cell field has a higher blocking strength than the cell field, the edge region having a near-surface area which is undoped to more weakly doped than the drift zones, and beneath the near-surface area at least one buried, vertically extending complementarily doped zone is positioned.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Franz Hirler, Armin Willmeroth, Michael Rueb, Holger Kapels
  • Publication number: 20100078694
    Abstract: A description is given of a normally on semiconductor component having a drift zone, a drift control zone and a drift control zone dielectric arranged between the drift zone and the drift control zone.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Anton Mauder, Franz Hirler
  • Publication number: 20100044788
    Abstract: A semiconductor device with a charge carrier compensation structure. In one embodiment, the semiconductor device has a central cell field with a gate and source structure. At least one bond contact area is electrically coupled to the gate structure or the source structure. A capacitance-increasing field plate is electrically coupled to at least one of the near-surface bond contact areas.
    Type: Application
    Filed: August 19, 2008
    Publication date: February 25, 2010
    Applicant: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Armin Willmeroth, Anton Mauder, Gerald Deboy, Holger Kapels, Carolin Tolksdorf, Frank Pfirsch
  • Publication number: 20100025748
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Application
    Filed: August 1, 2008
    Publication date: February 4, 2010
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Publication number: 20090321818
    Abstract: A semiconductor component with a two-stage body zone. One embodiment provides semiconductor component including a drift zone, and a compensation zone of a second conduction type. The compensation zone is arranged in the drift zone. A source zone and a body zone is provided. The body zone is arranged between the source zone and the drift zone. A gate electrode is arranged adjacent to the body zone. The body zone has a first body zone section and a second body zone section, which are adjacent to one another along the gate dielectric and of which the first body zone section is doped more highly than the second body zone section.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Anton Mauder, Winfried Kaindl
  • Publication number: 20090321804
    Abstract: A semiconductor component including a drift zone and a drift control zone. One embodiment provides a transistor component having a drift zone, a body zone, a source zone and a drain zone. The drift zone is arranged between the body zone and the drain zone. The body zone is arranged between the source zone and the drift zone.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Anton Mauder, Stefan Sedlmaier, Armin Willmeroth
  • Patent number: 7612344
    Abstract: A radiation detector and method. One embodiment provides a radiation detector including a semiconductor body with a first base zone of a first conduction type and with at least one second base zone arranged at least partly in the first base zone, extending in a vertical direction of the semiconductor body and doped complementarily to the first base zone. The method provides a semiconductor substrate. Several epitaxial layers are produced arranged one above another on the semiconductor substrate. The layers in each case include a basic doping of the first conduction type and together with the semiconductor substrate form the semiconductor body. Semiconductor zones of a second conduction type are produced.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: November 3, 2009
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Armin Willmeroth
  • Publication number: 20090267174
    Abstract: A semiconductor device with a charge carrier compensation structure in a semiconductor body and to a method for its production. The semiconductor body includes drift zones of a first conduction type and charge compensation zones of a second conduction type complementing the first conduction type. The drift zones include a semiconductor material applied in epitaxial growth zones, wherein the epitaxial growth zones include an epitaxially grown semiconductor material which is non-doped to lightly doped. Towards the substrate, the epitaxial growth zones are provided with a first conduction type incorporated by ion implantation over the entire surface and with selectively introduced doping material zones of a second, complementary conduction type. Towards the front side, the epitaxial growth zones are provided with a second, complementary conduction type incorporated by ion implantation over the entire surface and with selectively introduced doping material zones of the first conduction type.
    Type: Application
    Filed: April 29, 2008
    Publication date: October 29, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Michael Rueb
  • Publication number: 20090236680
    Abstract: A semiconductor device with a semiconductor body and method for its production is provided. The semiconductor body includes drift zones of epitaxially grown semiconductor material of a first conduction type. The semiconductor body further includes charge compensation zones of a second conduction type complementing the first conduction type, which are arranged laterally adjacent to the drift zones. The charge compensation zones are provided with a laterally limited charge compensation zone doping, which is introduced into the epitaxially grown semiconductor material. The epitaxially grown semiconductor material includes 20 to 80 atomic % of the doping material of the drift zones and a doping material balance of 80 to 20 atomic % introduced by ion implantation and diffusion.
    Type: Application
    Filed: March 20, 2008
    Publication date: September 24, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Franz Hirler
  • Publication number: 20090224302
    Abstract: A semiconductor device with inherent capacitances and method for its production. The semiconductor device has an inherent feedback capacitance between a control electrode and a first electrode. In addition, the semiconductor device has an inherent drain-source capacitance between the first electrode and a second electrode. At least one monolithically integrated additional capacitance is connected in parallel to the inherent feedback capacitance or in parallel to the inherent drain-source capacitance. The additional capacitance comprises a first capacitor surface and a second capacitor surface opposite the first capacitor surface. The capacitor surfaces are structured conductive layers of the semiconductor device on a front side of the semiconductor body, between which a dielectric layer is located and which form at least one additional capacitor.
    Type: Application
    Filed: March 6, 2008
    Publication date: September 10, 2009
    Applicant: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Winfried Kaindl, Carolin Tolksdorf, Anton Mauder, Holger Kapels, Gerald Deboy, Franz Hirler
  • Publication number: 20090218621
    Abstract: A semiconductor component with a drift region and a drift control region. One embodiment includes a semiconductor body having a drift region of a first conduction type in the semiconductor body. A drift control region composed of a semiconductor material, which is arranged, at least in sections, is adjacent to the drift region in the semiconductor body. An accumulation dielectric is arranged between the drift region and the drift control region.
    Type: Application
    Filed: July 27, 2006
    Publication date: September 3, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Frank Pfirsch, Anton Mauder, Armin Willmeroth, Hans-Joachim Schulze, Stefan Sedlmaier, Markus Zundel, Franz Hirler, Arunjai Mittal
  • Publication number: 20090189240
    Abstract: A semiconductor component with at least one field plate. One embodiment provides the field plate to make contact with the semiconductor body at a connection contact. The semiconductor body has in the region of the connection contact a doping concentration that is less than 5·1017 cm?3.
    Type: Application
    Filed: January 25, 2008
    Publication date: July 30, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Anton Mauder, Michael Rueb, Franz Hirler
  • Publication number: 20090184373
    Abstract: A semiconductor device is provided which has a semiconductor substrate. An active cell area having at least one active cell is formed in the semiconductor substrate, wherein at least sections of the active cell area are surrounded by an edge termination region. An integrated gate runner structure is arranged at least partially in the edge termination region and has at least one low electrical resistance portion and at least one high electrical resistance portion which are electrically connected in series with each other.
    Type: Application
    Filed: January 18, 2008
    Publication date: July 23, 2009
    Applicant: Infineon Technologies Austria AG
    Inventors: Winfried Kaindl, Michael Treu, Holger Kapels, Carolin Tolksdorf, Armin Willmeroth
  • Publication number: 20090166727
    Abstract: A power semiconductor element having a lightly doped drift and buffer layer is disclosed. One embodiment has, underneath and between deep well regions of a first conductivity type, a lightly doped drift and buffer layer of a second conductivity type. The drift and buffer layer has a minimum vertical extension between a drain contact layer on the adjacent surface of a semiconductor substrate and the bottom of the deepest well region which is at least equal to a minimum lateral distance between the deep well regions. The vertical extension can also be determined such that a total amount of dopant per unit area in the drift and buffer layer is larger then a breakdown charge amount at breakdown voltage.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 2, 2009
    Applicant: Infineon Technologies Austria AG
    Inventors: Markus Zundel, Franz Hirler, Armin Willmeroth
  • Publication number: 20090166729
    Abstract: A power semiconductor element having a lightly doped drift and buffer layer is disclosed. One embodiment has, underneath and between deep well regions of a first conductivity type, a lightly doped drift and buffer layer of a second conductivity type. The drift and buffer layer has a minimum vertical extension between a drain contact layer on the adjacent surface of a semiconductor substrate and the bottom of the deepest well region which is at least equal to a minimum lateral distance between the deep well regions. The vertical extension can also be determined such that a total amount of dopant per unit area in the drift and buffer layer is larger then a breakdown charge amount at breakdown voltage.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 2, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Markus Zundel, Franz Hirler, Armin Willmeroth
  • Patent number: 7554137
    Abstract: A semiconductor component (1) with charge compensation structure (3) has a semiconductor body (4) having a drift path (5) between two electrodes (6, 7). The drift path (5) has drift zones of a first conduction type, which provide a current path between the electrodes (6, 7) in the drift path, while charge compensation zones (11) of a complementary conduction type constrict the current path of the drift path (5). For this purpose, the drift path (5) has two alternately arranged, epitaxially grown diffusion zone types (9, 10), the first drift zone type (9) having monocrystalline semiconductor material on a monocrystalline substrate (12), and a second drift zone type (10) having monocrystalline semiconductor material in a trench structure (13), with complementarily doped walls (14, 15), the complementarily doped walls (14, 15) forming the charge compensation zones (11).
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: June 30, 2009
    Assignee: Infineon Technologies Austria AG
    Inventors: Stefan Sedlmaier, Hans-Joachim Schulze, Anton Mauder, Helmut Strack, Armin Willmeroth, Frank Pfirsch
  • Publication number: 20090159927
    Abstract: An integrated circuit device includes a semiconductor body fitted with a first electrode and a second electrode on opposite surfaces. A control electrode on an insulating layer controls channel regions of body zones for a current flow between the two electrodes. A drift section adjoining the channel regions comprises drift zones and charge compensation zones. A part of the charge compensation zones includes conductively connected charge compensation zones electrically connected to the first electrode. Another part includes nearly-floating charge compensation zones, so that an increased control electrode surface has a monolithically integrated additional capacitance CZGD in a cell region of the semiconductor device.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Winfried Kaindl, Carolin Tolksdorf, Michael Rueb
  • Publication number: 20090130806
    Abstract: A semiconductor component with charge compensation structure has a semiconductor body having a drift path between two electrodes. The drift path has drift zones of a first conduction type, which provide a current path between the electrodes in the drift path, while charge compensation zones of a complementary conduction type constrict the current path of the drift path. For this purpose, the drift path has two alternately arranged, epitaxially grown diffusion zone types, the first drift zone type having monocrystalline semiconductor material on a monocrystalline substrate, and a second drift zone type having monocrystalline semiconductor material in a trench structure, with complementarily doped walls, the complementarily doped walls forming the charge compensation zones.
    Type: Application
    Filed: January 8, 2009
    Publication date: May 21, 2009
    Applicant: Infineon Technologies Austria AG
    Inventors: Stefan Sedlmaier, Hans-Joachim Schulze, Anton Mauder, Helmut Strack, Armin Willmeroth, Frank Pfirsch
  • Publication number: 20090085064
    Abstract: A semiconductor device includes a first semiconductor substrate of a first band-gap material and a second semiconductor substrate of a second band-gap material. The second band-gap material has a lower band-gap than the first band-gap material. A heterojunction is formed between the first semiconductor substrate and the second semiconductor substrate substantially in a first plane. The semiconductor device further includes, in a cross-section which is perpendicular to the first plane, a first semiconductor region of a first conductivity type and a second semiconductor region of the first conductivity type both of which extend from the second semiconductor substrate at least partially into the first semiconductor substrate.
    Type: Application
    Filed: September 27, 2007
    Publication date: April 2, 2009
    Applicant: Infineon Technologies Austria AG
    Inventors: Michael Rueb, Michael Treu, Armin Willmeroth, Franz Hirler
  • Patent number: 7459365
    Abstract: The fabrication of a semiconductor component having a semiconductor body in which is arranged a very thin dielectric layer having sections which run in the vertical direction and which extend very deeply into the semiconductor body is disclosed. In one method a trench is formed in a drift zone region proceeding from the front side of a semiconductor body, a sacrificial layer is produced on at least a portion of the sidewalls of the trench and at least a portion of the trench is filled with a semiconductor material which is chosen such that the quotient of the net dopant charge of the semiconductor material in the trench and the total area of the sacrificial layer on the sidewalls of the trench between the semiconductor material and the drift zone region is less than the breakdown charge of the semiconductor material, and the sacrificial layer is replaced with a dielectric.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: December 2, 2008
    Assignee: Infineon Technologies Austria AG
    Inventors: Michael Rüb, Herbert Schäfer, Armin Willmeroth, Anton Mauder, Stefan Sedlmaier, Roland Rupp, Manfred Pippan, Hans Weber, Frank Pfirsch, Franz Hirler, Hans-Joachim Schulze