Patents by Inventor Benjamin Chu

Benjamin Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190304982
    Abstract: A method is described. The method includes forming bit line structures above bitline contact structures, forming a first material on top surfaces and sidewall surfaces of the bit line structures to establish step structures for via formation, and forming a second material on the top surface of the first material. Capacitor landing structures are formed by patterning the second material.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 3, 2019
    Inventors: Abhishek A. SHARMA, Van H. LE, Jack T. KAVALIEROS, Tahir GHANI, Yih WANG, Benjamin CHU-KUNG, Shriram SHIVARAMAN
  • Publication number: 20190305101
    Abstract: Techniques and mechanisms for improved performance characteristics of a transistor device. In an embodiment, a transistor of an integrated circuit comprises a source, a drain, a gate, a gate dielectric and a semiconductor structure which adjoins the gate dielectric. The semiconductor structure is configured to provide a conductive channel between the source and drain. The semiconductor structure includes first, second and third portions, the second portion between the source and the gate, and the third portion between the drain and the gate, wherein the first portion connects the second portion and third portion to one another. A thickness of the first portion is less than another thickness of one of the second portion or the third portion. In another embodiment, the locations of thicker portions of semiconductor structure mitigate overall transistor capacitance, while a thinner intermediary portion of the semiconductor structure promotes good sub-threshold swing characteristics.
    Type: Application
    Filed: March 28, 2018
    Publication date: October 3, 2019
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Sean T. Ma, Jack Kavalieros, Benjamin Chu-Kung
  • Publication number: 20190287789
    Abstract: III-N semiconductor heterostructures including a raised III-N semiconductor structures with inclined sidewall facets are described. In embodiments, lateral epitaxial overgrowth favoring semi-polar inclined sidewall facets is employed to bend crystal defects from vertical propagation to horizontal propagation. In embodiments, arbitrarily large merged III-N semiconductor structures having low defect density surfaces may be overgrown from trenches exposing a (100) surface of a silicon substrate. III-N devices, such as III-N transistors, may be further formed on the raised III-N semiconductor structures while silicon-based transistors may be formed in other regions of the silicon substrate.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Applicant: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Benjamin Chu-Kung, Marko Radosavljevic, Sanaz K. Gardner, Seung Hoon Sung, Ravi Pillarisetty, Robert S. Chau
  • Publication number: 20190273133
    Abstract: Disclosed herein are transistor amorphous interlayer arrangements, and related methods and devices. For example, in some embodiments, transistor amorphous interlayer arrangement may include a channel material and a transistor source/drain stack. The transistor source/drain stack may include a transistor electrode material configured to be a transistor source/drain contact, i.e. either a source contact or a drain contact of the transistor, and a doped amorphous semiconductor material disposed between the transistor electrode material and the channel material.
    Type: Application
    Filed: December 14, 2016
    Publication date: September 5, 2019
    Applicant: Intel Corporation
    Inventors: Ashish Agrawal, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey, Glenn A. Glass, Van H. Le, Anand S. Murthy, Jack T. Kavalieros, Matthew V. Metz, Willy Rachmady
  • Patent number: 10403733
    Abstract: Embodiments of the present disclosure describe semiconductor devices comprised of a semiconductor substrate with a metal oxide semiconductor field effect transistor having a channel including germanium or silicon-germanium, where a dielectric layer is coupled to the channel. The dielectric layer may include a metal oxide and at least one additional element, where the at least one additional element may increase a band gap of the dielectric layer. A gate electrode may be coupled to the dielectric layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: September 3, 2019
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Ashish Agrawal, Benjamin Chu-Kung, Van H. Le, Matthew V. Metz, Willy Rachmady, Jack T. Kavalieros, Rafael Rios
  • Patent number: 10388733
    Abstract: Transistor structures having channel regions comprising alternating layers of compressively and tensilely strained epitaxial materials are provided. The alternating epitaxial layers can form channel regions in single and multigate transistor structures. In alternate embodiments, one of the two alternating layers is selectively etched away to form nanoribbons or nanowires of the remaining material. The resulting strained nanoribbons or nanowires form the channel regions of transistor structures. Also provided are computing devices comprising transistors comprising channel regions comprised of alternating compressively and tensilely strained epitaxial layers and computing devices comprising transistors comprising channel regions comprised of strained nanoribbons or nanowires.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: August 20, 2019
    Assignee: Intel Corporation
    Inventors: Van H. Le, Benjamin Chu-Kung, Harold Hal W. Kennel, Willy Rachmady, Ravi Pillarisetty, Jack T. Kavalieros
  • Patent number: 10373977
    Abstract: Techniques are disclosed for customization of fin-based transistor devices to provide a diverse range of channel configurations and/or material systems, and within the same integrated circuit die. In accordance with an embodiment, sacrificial fins are cladded and then removed thereby leaving the cladding layer as a pair of standalone fins. Once the sacrificial fin areas are filled back in with a suitable insulator, the resulting structure is fin-on-insulator. The new fins can be configured with any materials by using such a cladding-on-core approach. The resulting fin-on-insulator structure is favorable, for instance, for good gate control while eliminating or otherwise reducing sub-channel source-to-drain (or drain-to-source) leakage current. In addition, parasitic capacitance from channel-to-substrate is significantly reduced.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: August 6, 2019
    Assignee: INTEL CORPORATION
    Inventors: Glenn A. Glass, Anand S. Murthy, Daniel B. Aubertine, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Chandra S. Mohapatra, Karthik Jambunathan, Gilbert Dewey, Willy Rachmady
  • Publication number: 20190229022
    Abstract: Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Inventors: Marko RADOSAVLJEVIC, Ravi PILLARISETTY, Gilbert DEWEY, Niloy MUKHERJEE, Jack KAVALIEROS, Willy RACHMADY, Van LE, Benjamin CHU-KUNG, Matthew METZ, Robert CHAU
  • Publication number: 20190214479
    Abstract: Integrated circuit transistor structures are disclosed that include a single crystal buffer structure that is lattice matched to the underlying single crystal silicon substrate. The buffer structure may be used to reduce sub-fin leakage in non-planar transistors, but can also be used in planar configurations. In some embodiments, the buffer structure is a single continuous layer of high bandgap dielectric material that is lattice matched to silicon. The techniques below can be utilized on NMOS and PMOS transistors, including any number of group IV and III-V semiconductor channel materials.
    Type: Application
    Filed: September 30, 2016
    Publication date: July 11, 2019
    Applicant: INTEL CORPORATION
    Inventors: KARTHIK JAMBUNATHAN, GLENN A. GLASS, ANAND S. MURTHY, JACK T. KAVALIEROS, SEUNG HOON SUNG, BENJAMIN CHU-KUNG, TAHIR GHANI
  • Publication number: 20190214466
    Abstract: An embodiment includes a device comprising: a substrate; a dielectric layer on the substrate and including a trench; a first portion of the trench including a first material that comprises at least one of a group III-V material and a group IV material; and a second portion of the trench, located between the first portion and the substrate, which includes a second material and an upper region and a lower region; wherein: (a)(i) the second material in the upper region has fewer defects than the second material in the lower region, and (a)(ii) the first material is strained. Other embodiments are described herein.
    Type: Application
    Filed: September 30, 2016
    Publication date: July 11, 2019
    Inventors: Benjamin Chu-Kung, Van H. Le, Ashish Agrawal, Jack T. Kavalieros, Matthew V. Metz, Seung Hoon Sung, Rafael Rios, Gilbert Dewey
  • Publication number: 20190189749
    Abstract: A subfin leakage problem with respect to the silicon-germanium (SiGe)/shallow trench isolation (STI) interface can be mitigated with a halo implant. A halo implant is used to form a highly resistive layer. For example, a silicon substrate layer 204 is coupled to a SiGe layer, which is coupled to a germanium (Ge) layer. A gate is disposed on the Ge layer. An implant is implanted in the Ge layer that causes the layer to become more resistive. However, an area does not receive the implant due to being protected (or covered) by the gate. The area remains less resistive than the remainder of the Ge layer. In some embodiments, the resistive area of a Ge layer can be etched and/or an undercuttage (etch undercut or EUC) can be performed to expose the unimplanted Ge area of the Ge layer.
    Type: Application
    Filed: September 28, 2016
    Publication date: June 20, 2019
    Applicant: INTEL CORPORATION
    Inventors: Benjamin Chu-Kung, Van Le, Seung Hoon Sung, Jack Kavalieros, Ashish Agrawal, Harold Kennel, Siddharth Chouksey, Anand Murthy, Tahir Ghani, Glenn Glass, Cheng-Ying Huang
  • Publication number: 20190189785
    Abstract: Integrated circuit transistor structures are disclosed that include a gate structure that is lattice matched to the underlying channel. In particular, the gate dielectric is lattice matched to the underlying semiconductor channel material, and in some embodiments, so is the gate electrode. In an example embodiment, single crystal semiconductor channel material and single crystal gate dielectric material that are sufficiently lattice matched to each other are epitaxially deposited. In some cases, the gate electrode material may also be a single crystal material that is lattice matched to the semiconductor channel material, thereby allowing the gate electrode to impart strain on the channel via the also lattice matched gate dielectric. A gate dielectric material that is lattice matched to the channel material can be used to reduce interface trap density (Dit). The techniques can be used in both planar and non-planar (e.g., finFET and nanowire) metal oxide semiconductor (MOS) transistor architectures.
    Type: Application
    Filed: September 28, 2016
    Publication date: June 20, 2019
    Applicant: INTEL CORPORATION
    Inventors: KARTHIK JAMBUNATHAN, GLENN A. GLASS, ANAND S. MURTHY, JACK T. KAVALIEROS, SEUNG HOON SUNG, BENJAMIN CHU-KUNG, TAHIR GHANI
  • Patent number: 10325774
    Abstract: III-N semiconductor heterostructures including a raised III-N semiconductor structures with inclined sidewall facets are described. In embodiments, lateral epitaxial overgrowth favoring semi-polar inclined sidewall facets is employed to bend crystal defects from vertical propagation to horizontal propagation. In embodiments, arbitrarily large merged III-N semiconductor structures having low defect density surfaces may be overgrown from trenches exposing a (100) surface of a silicon substrate. III-N devices, such as III-N transistors, may be further formed on the raised III-N semiconductor structures while silicon-based transistors may be formed in other regions of the silicon substrate.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: June 18, 2019
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Benjamin Chu-Kung, Marko Radosavljevic, Sanaz K. Gardner, Seung Hoon Sung, Ravi Pillarisetty, Robert S. Chau
  • Patent number: 10319646
    Abstract: Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: June 11, 2019
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Ravi Pillarisetty, Gilbert Dewey, Niloy Mukherjee, Jack Kavalieros, Willy Rachmady, Van Le, Benjamin Chu-Kung, Matthew Metz, Robert Chau
  • Patent number: 10315155
    Abstract: Membranes are provided for filtering a gas, in some cases air. Membranes using a highly porous cellulose nano fibrous barrier layer with a highly porous (surface-charged) substrate can exhibit high flux, high retention, and low pressure drop in air filtration of toxic aromatic gases, fumes, bacteria, viruses, dusts, and particulate matters.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: June 11, 2019
    Assignee: The Research Foundation for the State University of New York
    Inventors: Benjamin Chu, Benjamin S. Hsiao, Hongyang Ma
  • Publication number: 20190172938
    Abstract: III-N semiconductor heterostructures on III-N epitaxial islands laterally overgrown from a mesa of a silicon substrate. An IC may include a III-N semiconductor device disposed on the III-N epitaxial island overhanging the silicon mesa and may further include a silicon-based MOSFET monolithically integrated with the III-N device. Lateral epitaxial overgrowth from silicon mesas may provide III-N semiconductor regions of good crystal quality upon which transistors or other active semiconductor devices may be fabricated. Overhanging surfaces of III-N islands may provide multiple device layers on surfaces of differing polarity. Spacing between separate III-N islands may provide mechanical compliance to an IC including III-N semiconductor devices. Undercut of the silicon mesa may be utilized for transfer of III-N epitaxial islands to alternative substrates.
    Type: Application
    Filed: January 25, 2019
    Publication date: June 6, 2019
    Applicant: Intel Corporation
    Inventors: Sansaptak DASGUPTA, Han Wui THEN, Sanaz K. GARDNER, Marko RADOSAVLJEVIC, Seung Hoon SUNG, Benjamin CHU-KUNG, Robert S. CHAU
  • Publication number: 20190165106
    Abstract: A group III-N nanowire is disposed on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first group III-N material, a source region electrically coupled with a first end of the channel region, and a drain region electrically coupled with a second end of the channel region. A second group III-N material on the first group III-N material serves as a charge inducing layer, and/or barrier layer on surfaces of nanowire. A gate insulator and/or gate conductor coaxially wraps completely around the nanowire within the channel region. Drain and source contacts may similarly coaxially wrap completely around the drain and source regions.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 30, 2019
    Inventors: Han Wui THEN, Robert CHAU, Benjamin CHU-KUNG, Gilbert DEWEY, Jack KAVALIEROS, Matthew METZ, Niloy MUKHERJEE, Ravi PILLARISETTY, Marko RADOSAVLJEVIC
  • Publication number: 20190148491
    Abstract: Transistor structures having channel regions comprising alternating layers of compressively and tensilely strained epitaxial materials are provided. The alternating epitaxial layers can form channel regions in single and multigate transistor structures. In alternate embodiments, one of the two alternating layers is selectively etched away to form nanoribbons or nanowires of the remaining material. The resulting strained nanoribbons or nanowires form the channel regions of transistor structures. Also provided are computing devices comprising transistors comprising channel regions comprised of alternating compressively and tensilely strained epitaxial layers and computing devices comprising transistors comprising channel regions comprised of strained nanoribbons or nanowires.
    Type: Application
    Filed: January 15, 2019
    Publication date: May 16, 2019
    Inventors: Van H. LE, Benjamin CHU-KUNG, Harold Hal W. KENNEL, Willy RACHMADY, Ravi PILLARISETTY, Jack T. KAVALIEROS
  • Publication number: 20190140061
    Abstract: An interlayer film is deposited on a device layer on a substrate. A contact layer is deposited on the interlayer film. The interlayer film has a broken bandgap alignment to the device layer to reduce a contact resistance of the contact layer to the device layer.
    Type: Application
    Filed: June 27, 2016
    Publication date: May 9, 2019
    Inventors: Benjamin CHU-KUNG, Van H. LE, Jack T. KAVALIEROS, Willy RACHMADY, Matthew V. METZ, Ashish AGRAWAL, Seung Hoon SUNG
  • Publication number: 20190131187
    Abstract: A monocrystalline semiconductor layer is formed on a conductive layer on an insulating layer on a substrate. The conductive layer is a part of an interconnect layer. The monocrystalline semiconductor layer extends laterally on the insulating layer. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 28, 2016
    Publication date: May 2, 2019
    Inventors: Van H. LE, Marko RADOSAVLJEVIC, Benjamin CHU-KUNG, Rafael RIOS, Gilbert DEWEY