Patents by Inventor Benjamin Chu

Benjamin Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11101350
    Abstract: Techniques are disclosed for forming germanium (Ge)-rich channel transistors including one or more dopant diffusion barrier elements. The introduction of one or more dopant diffusion elements into at least a portion of a given source/drain (S/D) region helps inhibit the undesired diffusion of dopant (e.g., B, P, or As) into the adjacent Ge-rich channel region. In some embodiments, the elements that may be included in a given S/D region to help prevent the undesired dopant diffusion include at least one of tin and relatively high silicon. Further, in some such embodiments, carbon may also be included to help prevent the undesired dopant diffusion. In some embodiments, the one or more dopant diffusion barrier elements may be included in an interfacial layer between a given S/D region and the Ge-rich channel region and/or throughout at least a majority of a given S/D region. Numerous embodiments, configurations, and variations will be apparent.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: August 24, 2021
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Benjamin Chu-Kung, Seung Hoon Sung, Jack T. Kavalieros, Tahir Ghani, Harold W. Kennel
  • Patent number: 11101356
    Abstract: Integrated circuit transistor structures are disclosed that reduce n-type dopant diffusion, such as phosphorous or arsenic, from the source region and the drain region of a germanium n-MOS device into adjacent insulator regions during fabrication. The n-MOS transistor device may include at least 75% germanium by atomic percentage. In an example embodiment, a dopant-rich insulator cap is deposited adjacent to the source and/or drain regions, to provide dopant diffusion reduction. In some embodiments, the dopant-rich insulator cap is doped with an n-type impurity including Phosphorous in a concentration between 1 and 10% by atomic percentage. In some embodiments, the dopant-rich insulator cap may have a thickness in the range of 10 to 100 nanometers and a height in the range of 10 to 200 nanometers.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: August 24, 2021
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Cory C. Bomberger, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey
  • Patent number: 11081570
    Abstract: Integrated circuit transistor structures are disclosed that include a gate structure that is lattice matched to the underlying channel. In particular, the gate dielectric is lattice matched to the underlying semiconductor channel material, and in some embodiments, so is the gate electrode. In an example embodiment, single crystal semiconductor channel material and single crystal gate dielectric material that are sufficiently lattice matched to each other are epitaxially deposited. In some cases, the gate electrode material may also be a single crystal material that is lattice matched to the semiconductor channel material, thereby allowing the gate electrode to impart strain on the channel via the also lattice matched gate dielectric. A gate dielectric material that is lattice matched to the channel material can be used to reduce interface trap density (Dit). The techniques can be used in both planar and non-planar (e.g., finFET and nanowire) metal oxide semiconductor (MOS) transistor architectures.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: August 3, 2021
    Assignee: Intel Corporation
    Inventors: Karthik Jambunathan, Glenn A. Glass, Anand S. Murthy, Jack T. Kavalieros, Seung Hoon Sung, Benjamin Chu-Kung, Tahir Ghani
  • Patent number: 11031499
    Abstract: An apparatus including a transistor device including a channel disposed on a substrate between a source and a drain, a gate electrode disposed on the channel, wherein the channel includes a length dimension between source and drain that is greater than a length dimension of the gate electrode such that there is a passivated underlap between an edge of the gate electrode and an edge of the channel relative to each of the source and the drain. A method including forming a channel of a transistor device on a substrate; forming first and second passivation layers on a surface of substrate on opposite sides of the channel; forming a gate stack on the channel between first and second passivation layers; and forming a source on the substrate between the channel and the first passivation layer and a drain on the substrate between the channel and the second passivation layer.
    Type: Grant
    Filed: July 2, 2016
    Date of Patent: June 8, 2021
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Van H. Le, Matthew V. Metz, Benjamin Chu-Kung, Ashish Agrawal, Jack T. Kavalieros
  • Publication number: 20210167216
    Abstract: Deep gate-all-around semiconductor devices having germanium or group 111-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 3, 2021
    Inventors: Ravi Pillarisetty, Willy Rachmady, Van H. Le, Seung Hoon Sung, Jessica S. Kachian, Jack T. Kavalieros, Han Wui Then, Gilbert Dewey, Marko Radosavljevic, Benjamin Chu-Kung, Niloy Mukherjee
  • Patent number: 11024713
    Abstract: An apparatus is provided which comprises: a semiconductor region on a substrate, a gate stack on the semiconductor region, a source region of doped semiconductor material on the substrate adjacent a first side of the semiconductor region, a drain region of doped semiconductor material on the substrate adjacent a second side of the semiconductor region, and a transition region in the drain region, adjacent the semiconductor region, wherein the transition region comprises varying dopant concentrations that increase in a direction away from the semiconductor region. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: December 31, 2016
    Date of Patent: June 1, 2021
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Dipanjan Basu, Glenn A. Glass, Harold W. Kennel, Ashish Agrawal, Benjamin Chu-Kung, Anand S. Murthy, Jack T. Kavalieros, Tahir Ghani
  • Patent number: 11004954
    Abstract: Integrated circuit transistor structures are disclosed that include a single crystal buffer structure that is lattice matched to the underlying single crystal silicon substrate. The buffer structure may be used to reduce sub-fin leakage in non-planar transistors, but can also be used in planar configurations. In some embodiments, the buffer structure is a single continuous layer of high bandgap dielectric material that is lattice matched to silicon. The techniques below can be utilized on NMOS and PMOS transistors, including any number of group IV and III-V semiconductor channel materials.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: May 11, 2021
    Assignee: Intel Corporation
    Inventors: Karthik Jambunathan, Glenn A. Glass, Anand S. Murthy, Jack T. Kavalieros, Seung Hoon Sung, Benjamin Chu-Kung, Tahir Ghani
  • Patent number: 10998270
    Abstract: Techniques are disclosed for forming transistor devices having reduced interfacial resistance in a local interconnect. The local interconnect can be a material having similar composition to that of the source/drain material. That composition can be a metal alloy of a group IV element such as nickel germanide. The local interconnect of the semiconductor integrated circuit can function in the absence of barrier and liner layers. The devices can be used on MOS transistors including PMOS transistors.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: May 4, 2021
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Glenn A. Glass, Van H. Le, Ashish Agrawal, Benjamin Chu-Kung, Anand S. Murthy, Jack T. Kavalieros
  • Patent number: 10985263
    Abstract: An apparatus is provided which comprises: a semiconductor region on a substrate, a gate stack on the semiconductor region, a source region of doped semiconductor material on the substrate adjacent a first side of the semiconductor region, a cap region on the substrate adjacent a second side of the semiconductor region, wherein the cap region comprises semiconductor material of a higher band gap than the semiconductor region, and a drain region comprising doped semiconductor material on the cap region. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: December 31, 2016
    Date of Patent: April 20, 2021
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Dipanjan Basu, Ashish Agrawal, Van H. Le, Benjamin Chu-Kung, Harold W. Kennel, Glenn A. Glass, Anand S. Murthy, Jack T. Kavalieros, Tahir Ghani
  • Patent number: 10950733
    Abstract: Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: March 16, 2021
    Assignee: Google LLC
    Inventors: Ravi Pillarisetty, Willy Rachmady, Van H. Le, Seung Hoon Sung, Jessica S. Kachian, Jack T. Kavalieros, Han Wui Then, Gilbert Dewey, Marko Radosavljevic, Benjamin Chu-Kung, Niloy Mukherjee
  • Patent number: 10930500
    Abstract: III-N semiconductor heterostructures including a raised III-N semiconductor structures with inclined sidewall facets are described. In embodiments, lateral epitaxial overgrowth favoring semi-polar inclined sidewall facets is employed to bend crystal defects from vertical propagation to horizontal propagation. In embodiments, arbitrarily large merged III-N semiconductor structures having low defect density surfaces may be overgrown from trenches exposing a (100) surface of a silicon substrate. III-N devices, such as III-N transistors, may be further formed on the raised III-N semiconductor structures while silicon-based transistors may be formed in other regions of the silicon substrate.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Benjamin Chu-Kung, Marko Radosavljevic, Sanaz K. Gardner, Seung Hoon Sung, Ravi Pillarisetty, Robert S. Chau
  • Publication number: 20210050455
    Abstract: Embodiments of the invention include non-planar InGaZnO (IGZO) transistors and methods of forming such devices. In an embodiment, the IGZO transistor may include a substrate and source and drain regions formed over the substrate. According to an embodiment, an IGZO layer may be formed above the substrate and may be electrically coupled to the source region and the drain region. Further embodiments include a gate electrode that is separated from the IGZO layer by a gate dielectric. In an embodiment, the gate dielectric contacts more than one surface of the IGZO layer. In one embodiment, the IGZO transistor is a finfet transistor. In another embodiment the IGZO transistor is a nanowire or a nanoribbon transistor. Embodiments of the invention may also include a non-planar IGZO transistor that is formed in the back end of line stack (BEOL) of an integrated circuit chip.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 18, 2021
    Inventors: Van H. LE, Gilbert DEWEY, Rafael RIOS, Jack T. KAVALIEROS, Marko RADOSAVLJEVIC, Kent E. MILLARD, Marc C. FRENCH, Ashish AGRAWAL, Benjamin CHU-KUNG, Ryan E. ARCH
  • Patent number: 10894838
    Abstract: The present disclosure provides methods for producing carboxylated nanocelluloses. Compared with conventional methods, the methods of the present disclosure are simple and cost-effective in the production of carboxylated (or carboxy) nanocelluloses, in embodiments nanofibers and/or nanowhiskers, directly from raw biomass, including lignocellulose wood, non-wood sources, non-lignocellulose wood, lignocellulose or pure cellulose. The carboxy groups on the surface of nanocellulose thus produced can then be easily modified into functional derivatives such as amide, acetate, ether, ester, etc. The resulting nanocelluloses may be used to form purifying agents and/or filters to remove impurities from wastewater.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: January 19, 2021
    Assignee: The Research Foundation for the State University of New York
    Inventors: Benjamin S. Hsiao, Benjamin Chu, Priyanka R. Sharma
  • Publication number: 20210005748
    Abstract: Integrated circuit transistor structures are disclosed that reduce n-type dopant diffusion, such as phosphorous or arsenic, from the source region and the drain region of a germanium n-MOS device into adjacent shallow trench isolation (STI) regions during fabrication. The n-MOS transistor device may include at least 75% germanium by atomic percentage. In an example embodiment, the structure includes an intervening diffusion barrier deposited between the n-MOS transistor and the STI region to provide dopant diffusion reduction. In some embodiments, the diffusion barrier may include silicon dioxide with carbon concentrations between 5 and 50% by atomic percentage. In some embodiments, the diffusion barrier may be deposited using chemical vapor deposition (CVD), atomic layer deposition (ALD), or physical vapor deposition (PVD) techniques to achieve a diffusion barrier thickness in the range of 1 to 5 nanometers.
    Type: Application
    Filed: September 26, 2017
    Publication date: January 7, 2021
    Applicant: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Cory C. Bomberger, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey
  • Publication number: 20210005722
    Abstract: Integrated circuit transistor structures are disclosed that reduce n-type dopant diffusion, such as phosphorous or arsenic, from the source region and the drain region of a germanium n-MOS device into adjacent insulator regions during fabrication. The n-MOS transistor device may include at least 75% germanium by atomic percentage. In an example embodiment, a dopant-rich insulator cap is deposited adjacent to the source and/or drain regions, to provide dopant diffusion reduction. In some embodiments, the dopant-rich insulator cap is doped with an n-type impurity including Phosphorous in a concentration between 1 and 10% by atomic percentage. In some embodiments, the dopant-rich insulator cap may have a thickness in the range of 10 to 100 nanometers and a height in the range of 10 to 200 nanometers.
    Type: Application
    Filed: September 29, 2017
    Publication date: January 7, 2021
    Applicant: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Cory C. Bomberger, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey
  • Publication number: 20200411690
    Abstract: An apparatus is provided which comprises: a first region over a substrate, wherein the first region comprises a first semiconductor material having a L-valley transport energy band structure, a second region in contact with the first region at a junction, wherein the second region comprises a second semiconductor material having a X-valley transport energy band structure, wherein a <111> crystal direction of one or more crystals of the first and second semiconductor materials are substantially orthogonal to the junction, and a metal adjacent to the second region, the metal conductively coupled to the first region through the junction. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: September 29, 2017
    Publication date: December 31, 2020
    Applicant: Intel Corporation
    Inventors: Dax M. Crum, Cory E. Weber, Rishabh Mehandru, Harold Kennel, Benjamin Chu-Kung
  • Patent number: 10847656
    Abstract: Embodiments of the invention include non-planar InGaZnO (IGZO) transistors and methods of forming such devices. In an embodiment, the IGZO transistor may include a substrate and source and drain regions formed over the substrate. According to an embodiment, an IGZO layer may be formed above the substrate and may be electrically coupled to the source region and the drain region. Further embodiments include a gate electrode that is separated from the IGZO layer by a gate dielectric. In an embodiment, the gate dielectric contacts more than one surface of the IGZO layer. In one embodiment, the IGZO transistor is a finfet transistor. In another embodiment the IGZO transistor is a nanowire or a nanoribbon transistor. Embodiments of the invention may also include a non-planar IGZO transistor that is formed in the back end of line stack (BEOL) of an integrated circuit chip.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Van H. Le, Gilbert Dewey, Rafael Rios, Jack T. Kavalieros, Marko Radosavljevic, Kent E. Millard, Marc C. French, Ashish Agrawal, Benjamin Chu-Kung, Ryan E. Arch
  • Publication number: 20200365711
    Abstract: Integrated circuit transistor structures are disclosed that reduce n-type dopant diffusion, such as phosphorous or arsenic, from the source region and the drain region of a germanium n-MOS device into adjacent shallow trench isolation (STI) regions during fabrication. The n-MOS transistor device may include at least 75% germanium by atomic percentage. In an example embodiment, the STI is doped with an n-type impurity, in regions of the STI adjacent to the source and/or drain regions, to provide dopant diffusion reduction. In some embodiments, the STI region is doped with an n-type impurity including Phosphorous in a concentration between 1 and 10% by atomic percentage. In some embodiments, the thickness of the doped STI region may range between 10 and 100 nanometers.
    Type: Application
    Filed: September 29, 2017
    Publication date: November 19, 2020
    Applicant: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Cory C. Bomberger, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey
  • Publication number: 20200343379
    Abstract: Embodiments herein describe techniques for a semiconductor device, which may include a substrate, a metallic encapsulation layer above the substrate, and a gate electrode above the substrate and next to the metallic encapsulation layer. A channel layer may be above the metallic encapsulation layer and the gate electrode, where the channel layer may include a source area and a drain area. In addition, a source electrode may be coupled to the source area, and a drain electrode may be coupled to the drain area. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 27, 2017
    Publication date: October 29, 2020
    Inventors: Abhishek A. SHARMA, Van H. LE, Jack T. KAVALIEROS, Tahir GHANI, Gilbert DEWEY, Shriram SHIVARAMAN, Inanc MERIC, Benjamin CHU-KUNG
  • Publication number: 20200335610
    Abstract: Tunneling Field Effect Transistors (TFETs) are promising devices in that they promise significant performance increase and energy consumption decrease due to a steeper subthreshold slope (for example, smaller sub-threshold swing). In various embodiments, vertical fin-based TFETs can be fabricated in trenches, for example, silicon trenches. In another embodiment, vertical TFETs can be used on different material systems acting as a substrate and/or trenches (for example, Si, Ge, III-V semiconductors, GaN, and the like). In one embodiment, the tunneling direction in the channel of the vertical TFET can be perpendicular to the Si substrates. In one embodiment, this can be different than the tunneling direction in the channel of lateral TFETs.
    Type: Application
    Filed: February 28, 2018
    Publication date: October 22, 2020
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Jack Kavalieros, Ian Young, Matthew Metz, Willy Rachmady, Uygar Avci, Ashish Agrawal, Benjamin Chu-Kung