Patents by Inventor Chandra Mohan

Chandra Mohan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210028087
    Abstract: Embodiments disclosed herein include semiconductor dies and methods of forming such dies. In an embodiment, the semiconductor die comprises a semiconductor substrate, an active device layer in the semiconductor substrate, where the active device layer comprises one or more transistors, an interconnect layer over a first surface of the active device layer, a first bonding layer over a surface of the semiconductor substrate, a second bonding layer secured to the first bonding layer, and a heat spreader attached to the second bonding layer.
    Type: Application
    Filed: July 25, 2019
    Publication date: January 28, 2021
    Inventors: Shrenik KOTHARI, Chandra Mohan JHA, Weihau TANG, Robert SANKMAN, Xavier BRUN, Pooya TADAYON
  • Patent number: 10904368
    Abstract: Disclosed are a system, method and devices for simultaneous MACsec key agreement (MKA) negotiation between the devices. The present application controls a basic TLV message exchange between supplicant and authenticator in case of race condition to establish the secure association key (SAK) channel. The present application by controlling a basic TLV message exchange enables to establish a secure channel in race condition and achieves a high reliability of the product as this makes product launch MACsec services quickly and available for the service. Accordingly, when both sides (two supplicants) exchange hello with basic TLV at the same time, triggering the race condition, drops first message from the authenticator at supplicant and update the peer MN and the supplicant will not send reply. The authenticator when send next message (basic+potential peer TLV) with peer MN incremented by 1, the supplicant will respond with incremental message with live peer TLV.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: January 26, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Dharmanandana Reddy Pothula, Chandra Mohan Padamati, Antony Paul, Yun Qin, De Sheng
  • Publication number: 20200411464
    Abstract: Embodiments may relate to a microelectronic package that includes a die coupled with a package substrate. A plurality of solder thermal interface material (STIM) thermal interconnects may be coupled with the die and an integrated heat spreader (IHS) may be coupled with the plurality of STIM thermal interconnects. A thermal underfill material may be positioned between the IHS and the die such that the thermal underfill material at least partially surrounds the plurality of STIM thermal interconnects. Other embodiments may be described or claimed.
    Type: Application
    Filed: June 25, 2019
    Publication date: December 31, 2020
    Applicant: Intel Corporation
    Inventors: Debendra Mallik, Sergio Antonio Chan Arguedas, Jimin Yao, Chandra Mohan Jha
  • Publication number: 20200402884
    Abstract: Disclosed herein are vented lids for integrated circuit (IC) packages, as well as related methods and devices. For example, in some embodiments, an IC package may include a package substrate, a lid, and a die between the package substrate and the lid. A vent may extend between the interior surface and the exterior surface of the lid, and the vent may at least partially overlap the die.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Applicant: Intel Corporation
    Inventors: Zhimin Wan, Sergio Antonio Chan Arguedas, Peng Li, Chandra Mohan Jha, Aravindha R. Antoniswamy, Cheng Xu, Junnan Zhao, Ying Wang
  • Publication number: 20200395757
    Abstract: This application relates to methods and apparatus for handling a fault associated with a voltage source converter (VSC) for exchanging electrical power between an AC system (101, 102) and a DC system (106-1, 106-2). The VSC (104) is connected to the AC system via an interface apparatus, comprising a transformer (107) with a set of primary windings (202) for coupling to a plurality of AC phases (A, B, C) of the AC system. In embodiments of the disclosure the set of primary windings having a neutral point (N) and the interface apparatus includes a fault module (301) having an energy storage element (302) connected in parallel with a resistive element (303) between the neutral point of the set of primary windings and a reference voltage, such as ground.
    Type: Application
    Filed: February 12, 2019
    Publication date: December 17, 2020
    Inventors: Radnya Anant Mukhedkar, Chandra Mohan Sonnathi
  • Publication number: 20200391884
    Abstract: Methods and systems are provided for predictive maintenance of a vehicle component. One method involves mapping a current instance of a component of a vehicle to one of plurality of degradation groups of prior lifecycles for other instances of the component based on a relationship between performance measurement data for the current instance and historical performance measurement data associated with that respective degradation group, obtaining contextual data associated with operation of the vehicle, and determining a maintenance recommendation for the current instance of the component based on the contextual data using a predictive maintenance model associated with the mapped degradation group.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 17, 2020
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Megan L. Hawley, Timothy Griffith, Cavene Robinson, Ananda Vel Murugan Chandra Mohan, Dinkar Mylaraswamy
  • Patent number: 10811546
    Abstract: A process of depositing zirconium oxide (ZrO2) layers possessing dual properties of anti-reflection and passivation of silicon surfaces, including passivation of n-type and p-type silicon substrates. To grow a ZrO2 anti-reflection passivation layer, a precursor layer of zirconium oxide is spun on a silicon surface then dried, pyrolyzed and fired at suitable contact firing conditions, avoiding additional deposition. Thermal annealing in a hydrogen environment improves passivation quality of ZrO2 layer to a level 3-4 times higher than that of fired films alone. ZrO2 dielectric passivation layers exhibit improved passivation quality after illumination due to photo-enhanced passivation and higher passivation quality at higher thermal budget suitable for screen printed metal contact firing, unlike standard PECVD deposited passivation layers. The method is adaptable for fabrication of silicon solar cells and other structures utilizing passivated layers.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: October 20, 2020
    Assignee: Council of Scientific & Industrial Research
    Inventors: Prathap Pathi, Rani Kalpana, Vandana, Sanjay Kumar Srivastava, Chandra Mohan Singh Rauthan, Parakram Kumar Singh
  • Patent number: 10806054
    Abstract: An electronic subassembly includes an enclosure, a circuit board, a plurality of electronic components, and a plurality of flexible elastic thermal elements. Each flexible elastic thermal bridge is disposed in the gap between a different one of the electronic components and a first wall of the enclosure. Each flexible elastic thermal bridge includes a first thermally conductive metallic structure, a second thermally conductive metal structure, and an elastically deflectable thermal element. The first thermally conductive metallic structure contacts the first wall. The second thermally conductive metallic structure contacts the top surface of the electronic component and is spaced apart from the first thermally conductive metallic structure to define a void. The elastically deflectable thermal element is disposed in the void and directly contacts both the first thermally conductive metallic structure and the second thermally conductive metallic structure.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: October 13, 2020
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Saravanakumar Mahalingam, NSV Sarveswara Sarma A, D Chandra Mohan Vyas, Ravi Radhakrishnan, Mathews Kuriakose
  • Publication number: 20200312741
    Abstract: An IC package comprising a substrate comprising a dielectric, an IC device coupled to the substrate; and a thermoelectric cooling (TEC) device adjacent to the IC device and coupled to the substrate. A thermal trace extends laterally on or within the dielectric between the TEC device to the IC device, and the thermal trace is coupled to the TEC device and the IC device.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Zhimin Wan, Krishna Vasanth Valavala, Chandra Mohan Jha, Shankar Devasenathipathy
  • Publication number: 20200312742
    Abstract: An IC package, comprising a first IC component comprising a first interconnect on a first surface thereof; a second IC component comprising a second interconnect on a second surface thereof. The second component is above the first component, and the second surface is opposite the first surface. A thermoelectric cooling (TEC) device is between the first surface and the second surface. The TEC device is electrically coupled to the first interconnect and to the second interconnect.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 1, 2020
    Inventors: Kelly Lofgreen, Chandra Mohan Jha, Krishna Vasanth Valavala
  • Publication number: 20200211927
    Abstract: Microelectronic assemblies that include a cooling channel, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a surface, a die having a surface, and a fluidic channel between the surface of the die and the surface of the package substrate, wherein a top surface of the fluidic channel is defined by the surface of the die and a bottom surface of the fluidic channel is defined by the surface of the package substrate. In some embodiments, a microelectronic assembly may include a package substrate having a surface; a die having a surface; and an interposer having a fluidic channel between the surface of the die and the surface of the package substrate.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 2, 2020
    Applicant: Intel Corporation
    Inventors: Zhimin Wan, Cheng Xu, Yikang Deng, Junnan Zhao, Ying Wang, Chong Zhang, Kyu Oh Lee, Chandra Mohan Jha, Chia-Pin Chiu
  • Publication number: 20200194330
    Abstract: Integrated circuit IC package with one or more IC dies including solder features that are thermally coupled to the IC. The thermally coupled solder features (e.g., bumps) may be electrically insulated from solder features electrically coupled to the IC, but interconnected with each other by one or more metallization layers within a plane of the IC package. An in-plane interconnected network of thermal solder features may improve lateral heat transfer, for example spreading heat from one or more hotspots on the IC die. An under-bump metallization (UBM) may interconnect two or more thermal solder features. A through-substrate via (TSV) metallization may interconnect two or more thermal solder features. A stack of IC dies may include thermal solder features interconnected by metallization within one or more planes of the stack.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 18, 2020
    Applicant: Intel Corporation
    Inventors: Prasad Ramanathan, Nicholas Neal, Chandra Mohan Jha
  • Publication number: 20200185300
    Abstract: An integrated circuit (IC) package comprises a substrate comprising a dielectric and a thermal conduit that is embedded within the dielectric. The thermal conduit has a length that extends laterally within the dielectric from a first end to a second end. An IC die is thermally coupled to the first end of the thermal conduit. The IC die comprises an interconnect that is coupled to the first end of the thermal conduit. An integrated heat spreader comprises a lid over the IC die and at least one sidewall extending from the edge of the lid to the substrate that is thermally coupled to the second end of the thermal conduit.
    Type: Application
    Filed: December 10, 2018
    Publication date: June 11, 2020
    Applicant: INTEL CORPORATION
    Inventors: Cheng Xu, Zhimin Wan, Lingtao Liu, Yikang Deng, Junnan Zhao, Chandra Mohan Jha, Kyu-oh Lee
  • Patent number: 10659395
    Abstract: A network where FC and Ethernet storage traffic share the underlying network. The network extends FC SAN storage specific attributes to Ethernet storage devices. The network is preferably formed of FC switches, so each edge switch acts as an FCoE FCF, with internal communications done using FC. IP packets are encapsulated in FC packets for transport. Preferably, either each outward facing switch port can be configured as an Ethernet or FC port, so devices can be connected as desired. FCoE devices connected to the network are in particular virtual LANs (VLANs). The name server database is extended to include VLAN information for the device and the zoning database has automatic FCOE_VLAN zones added to provide a mechanism for enhanced soft and hard zoning. Zoning is performed with the conventional zoning restrictions enhanced by including the factor that any FCoE devices must be in the same VLAN.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: May 19, 2020
    Assignee: Avago Technologies International Sales Pte. Limited
    Inventors: Kiran Sangappa Shirol, Chandra Mohan Konchada
  • Publication number: 20200126888
    Abstract: An integrated circuit (IC) package comprising an IC die, the IC die having a first surface and an opposing second surface. The IC die comprises a semiconductor material. The first surface comprises an active layer. A thermoelectric cooler (TEC) comprising a thermoelectric material is embedded within the IC die between the first surface and the second surface and adjacent to the active layer. The TEC has an annular shape that is substantially parallel to the first and second surfaces of the IC die. The thermoelectric material is confined between an outer sidewall along an outer perimeter of the TEC and an inner sidewall along an inner perimeter of the TEC. The outer and inner sidewalls are substantially orthogonal to the first and second surfaces of the IC die.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 23, 2020
    Applicant: Intel Corporation
    Inventors: Kelly Lofgreen, Chandra Mohan Jha, Krishna Vasanth Valavala
  • Publication number: 20200118990
    Abstract: A semiconductor device package structure is provided. The semiconductor device package structure includes a substrate having a cavity, and phase change material within the cavity. In an example, the phase change material has a phase change temperature lower than 120 degree centigrade. A die may be coupled to the substrate. In an example, the semiconductor device package structure includes one or more interconnect structures that are to couple the die to the phase change material within the cavity.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Applicant: Intel Corporation
    Inventors: Cheng Xu, Zhimin Wan, Yikang Deng, Junnan Zhao, Chong Zhang, Chandra Mohan M. Jha, Ying Wang, Kyu-oh Lee
  • Publication number: 20200118071
    Abstract: Examples provide machine language (“ML”)-powered on-time delivery prediction generation for virtual orders obtained from an order management component (“OMC”). Predictions based on order factors deterministic to on-time delivery are output to the OMC. Predictions become increasingly accurate over time based on the accuracy of past delivery predictions and give the probabilistic chance of on-time delivery (the “order-score”) in real-time before an order for goods and/or services is dispatched. The OMC uses the order-score to react preemptively to mitigate delay factors on orders likely to arrive late, increasing the probability of on-time delivery. Customers are given confidence predicted arrival times are accurate enough for scheduling purposes. Providers more easily maintain and grow good reputations and revenue.
    Type: Application
    Filed: November 26, 2018
    Publication date: April 16, 2020
    Inventors: Srinivasan Venkatesan, Sandeep Nayak, Subhash Kumar Dhaka, Shantanu Rai, Balasubrahmanyam Chaturvedula, Chandra Mohan Meena
  • Publication number: 20200111720
    Abstract: An Integrated Circuit (IC) device structure is provided. The IC device structure includes a first substrate, first one or more dies coupled to a first side of the first substrate by a first plurality of interconnect structures, second one or more dies coupled to a first section of a second side of the substrate by a second plurality of interconnect structures, and a third plurality of interconnect structures to couple a second section of the second side of the substrate to a second substrate. In an example, at least a part of the second one or more dies are within a cavity in the second substrate.
    Type: Application
    Filed: October 5, 2018
    Publication date: April 9, 2020
    Inventors: Zhimin Wan, Shankar Devasenathipathy, Chia-Pin Chiu, Chandra Mohan Jha, Weihua Tang
  • Publication number: 20200105643
    Abstract: An integrated heat spreader includes channel structures assembled in a frame. Each channel structure is independent of the other, and can be used to dissipate heat from integrated circuitry at a specific location within a package, and without allowing heat from that particular location to propagate to integrated circuitry at other locations within the package. Each channel structure can be implemented with metal having a high thermal conductivity (e.g., copper). The channel structures can be used in conjunction with liquid-based cooling or air-based cooling. The frame can be implemented with low thermal conductivity molding compound or plastic so the heat transfer from one channel structure to another is inhibited. The channel structures can have different configurations (e.g., straight, pillars, and/or pin fins) to provide different rates of flow, mixing, and/or cooling. The flow direction of air or liquid for the channel structures can be the same (parallel) or different (counter).
    Type: Application
    Filed: September 27, 2018
    Publication date: April 2, 2020
    Applicant: INTEL CORPORATION
    Inventors: ZHIMIN WAN, CHIA-PIN CHIU, CHANDRA MOHAN JHA, WEIHUA TANG, SHANKAR DEVASENATHIPATHY
  • Publication number: 20200105639
    Abstract: Embodiments include a microelectronic device package structure having a first die on the substrate. One or more additional dice are on the first die, and a thermal electric cooler (TEC) is on the first die adjacent at least one of the one or more additional dice. A dummy die is on the TEC, wherein the dummy die is thermally coupled to the first die.
    Type: Application
    Filed: October 2, 2018
    Publication date: April 2, 2020
    Applicant: Intel Corporation
    Inventors: Krishna Vasanth Valavala, Ravindranath Mahajan, Chandra Mohan Jha, Kelly Lofgreen, Weihua Tang