Patents by Inventor Charles M. Watkins

Charles M. Watkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6504291
    Abstract: A high resolution field emission display includes a faceplate and a baseplate. The faceplate includes a transparent viewing layer, a transparent conductive layer formed on the transparent viewing layer and intersecting stripes of light-absorbing, opaque insulating material formed on the transparent conductive layer. The insulating material defines openings less than one hundred microns wide between the intersecting stripes. The faceplate also includes a plurality of localized regions of cathodoluminescent material, each formed in one of the openings. The cathodoluminescent material includes a metal oxide providing reduced resistivity in the cathodoluminescent material. Significantly, the reduced resistivity of the cathodoluminescent material together with the focusing effect of the insulating material provide increased acuity in luminous images formed on the faceplate.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: January 7, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Zhongyi Xia, Jimmy J. Browning, Charles M. Watkins, David A. Cathey
  • Publication number: 20020130604
    Abstract: A high resolution field emission display includes a faceplate and a baseplate. The faceplate includes a transparent viewing layer, a transparent conductive layer formed on the transparent viewing layer and intersecting stripes of light-absorbing, opaque insulating material formed on the transparent conductive layer. The insulating material defines openings less than one hundred microns wide between the intersecting stripes. The faceplate also includes a plurality of localized regions of cathodoluminescent material, each formed in one of the openings. The cathodoluminescent material includes a metal oxide providing reduced resistivity in the cathodoluminescent material. Significantly, the reduced resistivity of the cathodoluminescent material together with the focusing effect of the insulating material provide increased acuity in luminous images formed on the faceplate.
    Type: Application
    Filed: May 16, 2002
    Publication date: September 19, 2002
    Inventors: Zhongyi Xia, Jimmy J. Browning, Charles M. Watkins, David A. Cathey
  • Publication number: 20020130611
    Abstract: A high resolution field emission display includes a faceplate and a baseplate. The faceplate includes a transparent viewing layer, a transparent conductive layer formed on the transparent viewing layer and intersecting stripes of light-absorbing, opaque insulating material formed on the transparent conductive layer. The insulating material defines openings less than one hundred microns wide between the intersecting stripes. The faceplate also includes a plurality of localized regions of cathodoluminescent material, each formed in one of the openings. The cathodoluminescent material includes a metal oxide providing reduced resistivity in the cathodoluminescent material. Significantly, the reduced resistivity of the cathodoluminescent material together with the focusing effect of the insulating material provide increased acuity in luminous images formed on the faceplate.
    Type: Application
    Filed: May 16, 2002
    Publication date: September 19, 2002
    Inventors: Zhongyi Xia, Jimmy J. Browning, Charles M. Watkins, David A. Cathey
  • Publication number: 20020125478
    Abstract: A high resolution field emission display includes a faceplate and a baseplate. The faceplate includes a transparent viewing layer, a transparent conductive layer formed on the transparent viewing layer and intersecting stripes of light-absorbing, opaque insulating material formed on the transparent conductive layer. The insulating material defines openings less than one hundred microns wide between the intersecting stripes. The faceplate also includes a plurality of localized regions of cathodoluminescent material, each formed in one of the openings. The cathodoluminescent material includes a metal oxide providing reduced resistivity in the cathodoluminescent material. Significantly, the reduced resistivity of the cathodoluminescent material together with the focusing effect of the insulating material provide increased acuity in luminous images formed on the faceplate.
    Type: Application
    Filed: May 14, 2002
    Publication date: September 12, 2002
    Inventors: Zhongyi Xia, Jimmy J. Browning, Charles M. Watkins, David A. Cathey
  • Patent number: 6441634
    Abstract: A method of electrically testing pixel functionality is provided comprising releasably disposing a wafer in a socket. The wafer has at least one baseplate comprised of cathode emitters arranged in pixels. The socket has pads. The socket pads are contacted with test pins, and each of the pixels is addressed individually, thereby causing the cathode emitters to emit electrons in a current. The current is collected from each of the pixels on an anode screen. Alternatively, the anode card may have pins, and these pins contact pads on the baseplate. The baseplate, or substrate with baseplates, does not require a socket with pins.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: August 27, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Jim Browning, Charles M. Watkins, David A. Cathey
  • Patent number: 6429582
    Abstract: A field emission display has an anode with a grille made at least in part of a getter material. The grille defines regions that are coated with phosphor to form pixels, and also getters free molecules within a sealed display. The getter material can alternatively be formed directly on at least a part of the grille, or over the grille on an intermediate layer.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: August 6, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Charles M. Watkins, David A. Cathey
  • Patent number: 6429835
    Abstract: A method of electrically testing pixel functionality is provided comprising releasably disposing a wafer in a socket. The wafer has at least one baseplate comprised of cathode emitters arranged in pixels. The socket has pads. The socket pads are contacted with test pins, and each of the pixels is addressed individually, thereby causing the cathode emitters to emit electrons in a current. The current is collected from each of the pixels on an anode screen. Alternatively, the anode card may have pins, and these pins contact pads on the baseplate. The baseplate, or substrate with baseplates, does not require a socket with pins.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: August 6, 2002
    Assignee: Micron Technologies, Inc.
    Inventors: Jim Browning, Charles M. Watkins, David A. Cathey
  • Patent number: 6420828
    Abstract: Faceplates for field emission displays having novel cathodoluminescent layers are disclosed. In one embodiment, a faceplate includes a cathodoluninescent layer exposed to electrons (scrubbed) in a vacuum, the electron's having a current density of greater than one hundred microamperes per square centimeter. The cathodoluninescent layer may be reversibly darkened by the scrubbing. In one alternate aspect, the cathodoluninescent layers are irradiated with an electron beam having a duty cycle duty cycle of between ten and one hundred percent. In alternate aspects, an accelerating voltage may be maintained between the cathodoluminescent layer and a source of electrons, and the accelerating voltage may be dithered to treat the cathodoluminescent layer to varying depths. Significantly, the scrubbed faceplate has significantly enhanced performance and increased usefull life compared to faceplates that have not been scrubbed.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: July 16, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Charles M. Watkins, Danny Dynka
  • Patent number: 6417618
    Abstract: Field emission displays having novel cathodoluminescent layers are disclosed. In one embodiment, the cathodoluminescent layers are exposed to electron irradiation with an electron current having a duty cycle in excess of ten percent. In alternate aspects, the electron irradiation (scrubbing) may be performed in a vacuum, and an accelerating voltage may be maintained between the cathodoluminescent layer and an source of electrons. The cathodoluminescent layer may be reversibly darkened by the scrubbing. The cathodoluminescent layers may be formed on a transparent conductive layer formed on a transparent insulating viewing screen to provide a faceplate. In one aspect, the cathodoluminescent layers are irradiated with electrons having a density of greater than one hundred microamperes/cm2. Significantly, this results in improved emitter life in a field emission display.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: July 9, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Charles M. Watkins, Danny Dynka
  • Patent number: 6414430
    Abstract: Field emission displays having novel cathodoluminescent layers are disclosed. The cathodoluminescent layers are irradiated with electrons having a density of greater than one hundred microamperes/cm2. Significantly, this results in improved emitter life in a field emission display. The display including the scrubbed faceplate has significantly enhanced performance and increased useful life compared to displays including faceplates that have not been scrubbed.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: July 2, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Charles M. Watkins, Danny Dynka
  • Patent number: 6414429
    Abstract: Faceplates for field emission displays having novel cathodoluminescent layers are disclosed. In one embodiment, a faceplate includes a cathodoluminescent layer exposed to electron irradiation with an electron curt having a kinetic energy of less than one thousand electron volts, The electron irradiation (scrubbing) may be performed in a vacuum, and the cathodoluminescent layer may be reversibly darkened by the scrubbing. The cathodoluminescent layers may be formed on a transparent conductive layer formed on a transparent insulating viewing screen. In one aspect, the cathodoluminescent layers are irradiated with electrons having a density of greater than one hundred microamperes/cm2. In alternate aspects, an accelerating voltage may be maintained between the cathodoluminescent layer and a source of electrons, and the accelerating voltage may be dithered to treat the cathodoluminescent layer to vary depths.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: July 2, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Charles M. Watkins, Danny Dynka
  • Patent number: 6400075
    Abstract: Faceplates for field mission displays having novel cathodoluminescent layers are disclosed. In one embodiment a faceplate includes a transparent conductive layer, and a cathodoluminescent layer formed on the transparent conductive layer, the cathodoluminescent layer having been scrubbed by electron irradiation from an electron source with an electron current having a duty cycle in excess of ten percent, the electron current having a current density of greater than one-tenth milliampere per square centimeter while a voltage less than a thousand volts is maintained between the cathodoluminescent layer and the electron source. In one aspect, the transparent conductive layer may be formed on a transparent insulating viewing screen. In alternate aspects, the voltage maintained between the cathodoluminescent layer and the electron source may be dithered to treat the cathodoluminescent layer to varying depths.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: June 4, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Charles M. Watkins, Danny Dynka
  • Patent number: 6366269
    Abstract: An inventive spacing structure is a unitary structure of uniform height including a multitude of rail members framed by and interconnected with a multitude of frame members. The frame and rail members project between a flat panel display's face and base panels across a substantial area of their facing surfaces. As a result, the unitary spacing structure spaces a substantial portion of the face panel away from the base panel in a substantially parallel spaced apart relationship with the base panel. Because the inventive spacing structure is a unitary structure, it can be conveniently manufactured apart from the flat panel display and then easily aligned with the image generating apparatus of the display. Thus, the unitary spacing structure can help to make flat panel displays less difficult, time-consuming and costly to manufacture.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: April 2, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Charles M. Watkins, Jason B. Elledge
  • Patent number: 6361391
    Abstract: A process is provided for forming spacers useful in large area displays. The process comprises steps of : forming bundles or boules comprising fiber strands which are held together with a binder; slicing the bundles or boules into slices; adhering the slices on an electrode plate of the display; and removing the binder. In the step of forming bundles or boules comprising fiber strands, the function of the binder is initially or fully performed by glass tubings surrounding the glass fibers. The clad glass of the envelopes etches more readily than the core glass.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: March 26, 2002
    Assignee: Micron Technology, Inc.
    Inventors: David A. Cathey, Charles M. Watkins, Darryl M. Stansbury, James J. Hofman, Robert T. Rasmussen, Surjit S. Chadha
  • Publication number: 20020031976
    Abstract: The present invention includes a low voltage, high current density, large area cathode for scrubbing of cathodoluminescent layers. The cathodoluminescent layers are formed on a transparent conductive layer formed on a transparent insulating viewing screen to provide a faceplate. An electrical coupling is formed to the transparent conductive layer to provide a return path for electrons. The faceplate and the cathodoluminescent layers are placed on a conveyor in a vacuum. The cathodoluminescent layers are irradiated with an electron beam having a density of greater than one hundred microamperes/cm2. The electron beam may be provided by a cathode including an insulating base, a first post secured to the insulating base near a first edge of the insulating base and a second post including a spring-loaded tip secured to the insulating base near a second edge of the insulating base.
    Type: Application
    Filed: September 19, 2001
    Publication date: March 14, 2002
    Inventors: Charles M. Watkins, Danny Dynka
  • Publication number: 20020019188
    Abstract: The present invention includes a low voltage, high current density, large area cathode for scrubbing of cathodoluminescent layers. The cathodoluminescent layers are formed on a transparent conductive layer formed on a transparent insulating viewing screen to provide a faceplate. An electrical coupling is formed to the transparent conductive layer to provide a return path for electrons. The faceplate and the cathodoluminescent layers are placed on a conveyer in a vacuum. The cathodoluminescent layers are irradiated with an electron beam having a density of greater than one hundred microamperes/cm2. The electron beam may be provided by a cathode including an insulating base, a first post secured to the insulating base near a first edge of the insulating base and a second post including a spring-loaded tip secured to the insulating base near a second edge of the insulating base.
    Type: Application
    Filed: September 18, 2001
    Publication date: February 14, 2002
    Inventors: Charles M. Watkins, Danny Dynka
  • Publication number: 20020014831
    Abstract: The present invention includes a low voltage, high current density, large area cathode for scrubbing of cathodoluminescent layers. The cathodoluminescent layers are formed on a transparent conductive layer formed on a transparent insulating viewing screen to provide a faceplate. An electrical coupling is formed to the transparent conductive layer to provide a return path for electrons. The faceplate and the cathodoluminescent layers are placed on a conveyer in a vacuum. The cathodoluminescent layers are irradiated with an electron beam having a density of greater than one hundred microamperes/cm2. The electron beam may be provided by a cathode including an insulating base, a first post secured to the insulating base near a first edge of the insulating base and a second post including a spring-loaded tip secured to the insulating base near a second edge of the insulating base.
    Type: Application
    Filed: September 19, 2001
    Publication date: February 7, 2002
    Inventors: Charles M. Watkins, Danny Dynka
  • Publication number: 20020014830
    Abstract: The present invention includes a low voltage, high current density, large area cathode for scrubbing of cathodoluminescent layers. The cathodoluminescent layers are formed on a transparent conductive layer fonned on a transparent insulating viewing screen to provide a faceplate. An electrical coupling is formed to the transparent conductive layer to provide a return path for electrons. The faceplate and the cathodoluminescent layers are placed on a conveyer in a vacuum. The cathodoluminescent layers are irradiated with an electron beam having a density of greater than one hundred microamperes/cm2. The electron beam may be provided by a cathode including an insulating base, a first post secured to the insulating base near a first edge of the insulating base and a second post including a spring-loaded tip secured to the insulating base near a second edge of the insulating base.
    Type: Application
    Filed: September 18, 2001
    Publication date: February 7, 2002
    Inventors: Charles M. Watkins, Danny Dynka
  • Publication number: 20020013116
    Abstract: The present invention includes a low voltage, high current density, large area cathode for scrubbing of cathodoluminescent layers. The cathodoluminescent layers are formed on a transparent conductive layer formed on a transparent insulating viewing screen to provide a faceplate. An electrical coupling is formed to the transparent conductive layer to provide a return path for electrons. The faceplate and the cathodoluminescent layers are placed on a conveyer in a vacuum. The cathodoluminescent layers are irradiated with an electron beam having a density of greater than one hundred microamperes/cm2. The electron beam may be provided by a cathode including an insulating base, a first post secured to the insulating base near a first edge of the insulating base and a second post including a spring-loaded tip secured to the insulating base near a second edge of the insulating base.
    Type: Application
    Filed: September 20, 2001
    Publication date: January 31, 2002
    Inventors: Charles M. Watkins, Danny Dynka
  • Patent number: 6338663
    Abstract: The present invention includes a low voltage, high current density, large area cathode for scrubbing of cathodoluminescent layers. The cathodoluminescent layers are formed on a transparent conductive layer formed on a transparent insulating viewing screen to provide a faceplate. An electrical coupling is formed to the transparent conductive layer to provide a return path for electrons. The faceplate and the cathodoluminescent layers are placed on a conveyer in a vacuum. The cathodoluminescent layers are irradiated with an electron beam having a density of greater than one hundred microamperes/cm2. The electron beam may be provided by a cathode including an insulating base, a first post secured to the insulating base near a first edge of the insulating base and a second post including a spring-loaded tip secured to the insulating base near a second edge of the insulating base.
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: January 15, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Charles M. Watkins, Danny Dynka