Patents by Inventor Chen Chu

Chen Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10784155
    Abstract: The present disclosure describes methods which employ a patterning photolithography/etch operations to form self-aligned interconnects with multi-metal gap fill. For example, the method includes a first pattern structure and a second pattern structure formed over a dielectric layer. Each of the first and second pattern structures includes a pair of spacers, and a center portion between the pair of spacers. A first opening, self-aligned to a space between the first and second pattern structures, is formed in the dielectric layer. A first conductive material is deposited in the first opening. The center portion of the second pattern structure is removed to form a void above the dielectric layer and between the pair of spacers of the second pattern structure. A second opening, self-aligned to the void, is formed in the dielectric layer; and a second conductive material is deposited in the second opening.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: September 22, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Chen Chu, Tai-I Yang, Cheng-Chi Chuang, Chia-Tien Wu
  • Patent number: 10784151
    Abstract: The present disclosure provides a method for forming an interconnect structure, including forming an Nth metal line principally extending in a first direction, forming a sacrificial bilayer over the Nth metal line, forming a dielectric layer over the sacrificial bilayer, removing a portion of the sacrificial bilayer, forming a conductive post in the sacrificial bilayer, wherein the conductive post having a top pattern coplanar with a top surface of the sacrificial bilayer and a bottom pattern in contact with a top surface of the Nth metal line, and forming an Nth metal via over the sacrificial bilayer.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: September 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hsiang-Wei Liu, Wei-Chen Chu, Chia-Tien Wu, Tai-I Yang
  • Patent number: 10739443
    Abstract: An optical apparatus including a semiconductor substrate; a first light absorption region supported by the semiconductor substrate, the first light absorption region configured to absorb photons and to generate photo-carriers from the absorbed photons; one or more first switches controlled by a first control signal, the one or more first switches configured to collect at least a portion of the photo-carriers based on the first control signal; and one or more second switches controlled by a second control signal, the one or more second switches configured to collect at least a portion of the photo-carriers based on the second control signal. The one or more first switches include a first trench located between the first p-doped region and the first n-doped region. The one or more second switches include a second trench located between the second p-doped region and the second n-doped region.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: August 11, 2020
    Assignee: Artilux, Inc.
    Inventors: Yun-Chung Na, Che-Fu Liang, Szu-Lin Cheng, Shu-Lu Chen, Kuan-Chen Chu, Chung-Chih Lin, Han-Din Liu
  • Patent number: 10741598
    Abstract: An optical apparatus including a semiconductor substrate; a first light absorption region supported by the semiconductor substrate, the first light absorption region configured to absorb photons and to generate photo-carriers from the absorbed photons; one or more first switches controlled by a first control signal, the one or more first switches configured to collect at least a portion of the photo-carriers based on the first control signal; one or more second switches controlled by a second control signal, the one or more second switches configured to collect at least a portion of the photo-carriers based on the second control signal; and a counter-doped region formed in a first portion of the first light absorption region, the counter-doped region including a first dopant and having a first net carrier concentration lower than a second net carrier concentration of a second portion of the first light absorption region.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: August 11, 2020
    Assignee: Atrilux, Inc.
    Inventors: Yun-Chung Na, Che-Fu Liang, Szu-Lin Cheng, Shu-Lu Chen, Kuan-Chen Chu, Chung-Chih Lin, Han-Din Liu
  • Patent number: 10734275
    Abstract: A method includes forming a hard mask over a target layer, performing a treatment on a first portion of the hard mask to form a treated portion, with a second portion of the hard mask left untreated as an untreated portion. The method further includes subjecting both the treated portion and the untreated portion of the hard mask to etching, in which the untreated portion is removed as a result of the etching, and the treated portion remains after the etching. A layer underlying the hard mask is etched, and the treated portion of the hard mask is used as a part of an etching mask in the etching.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: August 4, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiang-Wei Liu, Chia-Tien Wu, Wei-Chen Chu
  • Publication number: 20200243421
    Abstract: A water-cooling thermal dissipating method controls at least one of a fan, a pump, and a throttle valve to cool a heat generating element inside an electronic device through a cooling liquid. The method includes steps of: (a) performing a self-condition inspection, (b) detecting whether a working temperature of the cooling liquid is greater than a first predetermined temperature, and detecting whether a working temperature of the heat generating element is greater than a second predetermined temperature, (c) outputting a first warning signal if the working temperature of the cooling liquid is greater than the first predetermined temperature and a liquid level of the cooling liquid is not lower than a threshold liquid level, and outputting a second warning signal if the working temperature of the heat generating element is greater than the second predetermined temperature, and (d) displaying the first warning signal and the second warning signal.
    Type: Application
    Filed: April 13, 2020
    Publication date: July 30, 2020
    Inventors: Jer-Sheng HWANG, Teng-Kai CHANG, Chin-Chen CHU
  • Patent number: 10720959
    Abstract: A spread spectrum based audio frequency communication system at least includes a transmitting apparatus. The transmitting apparatus includes a first dot-product module, a summation module, a transmitting modulation module, a mixture module, a digital-to-analog converter, and a transmitter. The first dot-product module is configured to perform a dot-product of a first data and a first pseudo-noise code, and derive a first spreading data. The summation module is configured to sum up the first spreading data and a second spreading data to form a summed data. The transmitting modulation module is configured to vary a carrier signal with the summed data to form a modulated signal. The mixture module is configured to mix the modulated signal and an acoustic signal up to form a mixed signal. The digital-to-analog converter is configured to convert the mixed signal into acoustic waves. The transmitter transmits the acoustic waves.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: July 21, 2020
    Assignee: BRITISH CAYMAN ISLANDS INTELLIGO TECHNOLOGY INC.
    Inventors: Yao-Chun Liu, Chun-Hung Chen, Chen-Chu Hsu, Tsung-Liang Chen
  • Patent number: 10714421
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a conductive line over the semiconductor substrate. The semiconductor device structure also includes a conductive via on the conductive line. The conductive via has an upper portion and a protruding portion. The protruding portion extends from a bottom of the upper portion towards the conductive line. The bottom of the upper portion is wider than a top of the upper portion. The semiconductor device structure further includes a dielectric layer over the semiconductor substrate, and the dielectric layer surrounds the conductive line and the conductive via.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: July 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Yung-Hsu Wu, Chung-Ju Lee
  • Patent number: 10707260
    Abstract: A circuit that includes: a photodiode configured to absorb photons and to generate photo-carriers from the absorbed photons; a first MOSFET transistor that includes: a first channel terminal coupled to a first terminal of the photodiode and configured to collect a portion of the photo-carriers generated by the photodiode; a second channel terminal; and a gate terminal coupled to a first control voltage source; a first readout circuit configured to output a first readout voltage; a second readout circuit configured to output a second readout voltage; and a current-steering circuit configured to steer the photo-carriers generated by the photodiode to one or both of the first readout circuit and the second readout circuit.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: July 7, 2020
    Assignee: Artilux, Inc.
    Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang, Yuan-Fu Lyu, Chien-Lung Chen, Chung-Chih Lin, Kuan-Chen Chu
  • Publication number: 20200183587
    Abstract: A system, method, and machine-readable storage medium for analyzing a state of a data object are provided. In some embodiments, the method includes receiving, at a storage device, a metadata request for the data object from a client. The data object is composed of a plurality of segments. The method also includes selecting a subset of the plurality of segments and obtaining a segment state for each segment of the subset. Each segment state indicates whether the respective segment is accessible via a backing store. The method further includes determining a most restrictive state of the one or more segment states and sending state information to the client in response to the metadata request, the state information being derived from the most restrictive state.
    Type: Application
    Filed: March 20, 2019
    Publication date: June 11, 2020
    Inventors: Raymond Yu Shun Mak, Aditya Kalyanakrishnan, Song Guen Yoon, Emalayan Vairavanathan, Dheeraj Sangamkar, Chia-Chen Chu
  • Patent number: 10665528
    Abstract: A water-cooling thermal dissipating system includes an electronic device and a thermal dissipating device. The electronic device includes a computing module includes a computing unit releasing heat when operation. The thermal dissipating device includes a thermal conducting unit, a pump, a tank, a thermal exchanger, and a controlling module; the thermal conductive unit is attached to the computing unit for thermal conduction; the pump is coupled to the thermal conductive unit, the pump, the tank, and the thermal exchanger for pumping a cooling-liquid therethrough, such that the cooling liquid is allowed to flow into the thermal conductive unit for absorbing heat. The controlling module generates an abnormal signal when the thermal dissipating device is sensed to be in an abnormal state, and the computing module forces to shut down the electronic device after continually receiving the abnormal signal for a predetermined time.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: May 26, 2020
    Assignee: ENERMAX TECHNOLOGY CORPORATION
    Inventors: Jer-Sheng Hwang, Teng-Kai Chang, Chin-Chen Chu
  • Publication number: 20200161364
    Abstract: A circuit that includes: a photodiode configured to absorb photons and to generate photo-carriers from the absorbed photons; a first MOSFET transistor that includes: a first channel terminal coupled to a first terminal of the photodiode and configured to collect a portion of the photo-carriers generated by the photodiode; a second channel terminal; and a gate terminal coupled to a first control voltage source; a first readout circuit configured to output a first readout voltage; a second readout circuit configured to output a second readout voltage; and a current-steering circuit configured to steer the photo-carriers generated by the photodiode to one or both of the first readout circuit and the second readout circuit.
    Type: Application
    Filed: January 24, 2020
    Publication date: May 21, 2020
    Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang, Yuan-Fu Lyu, Chien-Lung Chen, Chung-Chih Lin, Kuan-Chen Chu
  • Publication number: 20200144104
    Abstract: A method includes forming a hard mask over a target layer, performing a treatment on a first portion of the hard mask to form a treated portion, with a second portion of the hard mask left untreated as an untreated portion. The method further includes subjecting both the treated portion and the untreated portion of the hard mask to etching, in which the untreated portion is removed as a result of the etching, and the treated portion remains after the etching. A layer underlying the hard mask is etched, and the treated portion of the hard mask is used as a part of an etching mask in the etching.
    Type: Application
    Filed: December 26, 2019
    Publication date: May 7, 2020
    Inventors: Hsiang-Wei Liu, Chia-Tien Wu, Wei-Chen Chu
  • Publication number: 20200130324
    Abstract: An impact resistant structure for an electronic component. The impact resistant structure includes a resistance stack layer and a damping laminate. The resistance stack layer is disposed on a first surface of the electronic component, a thickness of the resistance stack layer is less than 10 ?m, and a Young's modulus of the resistance stack layer is between 40 GPa and 150 GPa. The damping laminate is disposed on a second surface of the electronic component. The second surface of the electronic component is opposite to the first surface. The damping laminate includes a soft film and a support film, where the support film is disposed between the soft film and the electronic component.
    Type: Application
    Filed: December 30, 2019
    Publication date: April 30, 2020
    Applicants: Industrial Technology Research Institute, Intellectual Property Innovation Corporation
    Inventors: Jui-Chang Chuang, Chen-Chu Tsai, Kai-Ming Chang, Chih-Chia Chang, Ting-Hsun Cheng
  • Publication number: 20200132927
    Abstract: A waveguide structure includes a first surface having a first width, a second surface having a second width, the second surface being opposite to the first surface, and a sidewall surface connecting the first surface and the second surface. The first width is greater than the second width.
    Type: Application
    Filed: October 24, 2019
    Publication date: April 30, 2020
    Inventors: SZU-LIN CHENG, CHIEN-YU CHEN, HAN-DIN LIU, CHIA-PENG LIN, CHUNG-CHIH LIN, YUN-CHUNG NA, PIN-TSO LIN, TSUNG-TING WU, YU-HSUAN LIU, KUAN-CHEN CHU
  • Publication number: 20200124985
    Abstract: Photolithography overlay errors are a source of patterning defects, which contribute to low wafer yield. An interconnect formation process that employs a patterning photolithography/etch process with self-aligned interconnects is disclosed herein. The interconnection formation process, among other things, improves a photolithography overlay (OVL) margin since alignment is accomplished on a wider pattern. In addition, the patterning photolithography/etch process supports multi-metal gap fill and low-k dielectric formation with voids.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Hsiang-Wei Liu, Shau-Lin Shue, Li-Lin Su, Yung-Hsu Wu
  • Patent number: 10622390
    Abstract: An optical apparatus including a semiconductor substrate; a first light absorption region supported by the semiconductor substrate, the first light absorption region including germanium and configured to absorb photons and to generate photo-carriers from the absorbed photons; a first layer supported by at least a portion of the semiconductor substrate and the first light absorption region, the first layer being different from the first light absorption region; one or more first switches controlled by a first control signal, the one or more first switches configured to collect at least a portion of the photo-carriers based on the first control signal; and one or more second switches controlled by a second control signal, the one or more second switches configured to collect at least a portion of the photo-carriers based on the second control signal, wherein the second control signal is different from the first control signal.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: April 14, 2020
    Assignee: Artilux, Inc.
    Inventors: Yun-Chung Na, Che-Fu Liang, Szu-Lin Cheng, Shu-Lu Chen, Kuan-Chen Chu, Chung-Chih Lin, Han-Din Liu
  • Publication number: 20200110139
    Abstract: A method for scanning artificial structure, wherein a scanning artificial structure apparatus comprises four magnetic-field sensors, the four magnetic-field sensors are non-coplanar configured, the method comprises following steps of: moving the scanning artificial structure apparatus along a scanning path within a to-be-tested area, in the meantime, measuring magnetic field by the four magnetic-field sensors, and recording a position sequence when measuring magnetic field, wherein four magnetic-field measurement sequences are measured by the four magnetic-field sensors; and calculating a magnetic-field variation distribution from the four magnetic-field measurement sequences and the position sequence, wherein the magnetic-field variation distribution is corresponding to at least one artificial structure distribution.
    Type: Application
    Filed: October 4, 2019
    Publication date: April 9, 2020
    Inventors: Chien-Chih CHEN, Yi-Chen CHU, Yung-Chieh CHUANG
  • Publication number: 20200083093
    Abstract: The present disclosure provides a method for forming an interconnect structure, including forming an Nth metal line principally extending in a first direction, forming a sacrificial bilayer over the Nth metal line, forming a dielectric layer over the sacrificial bilayer, removing a portion of the sacrificial bilayer, forming a conductive post in the sacrificial bilayer, wherein the conductive post having a top pattern coplanar with a top surface of the sacrificial bilayer and a bottom pattern in contact with a top surface of the Nth metal line, and forming an Nth metal via over the sacrificial bilayer.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventors: HSIANG-WEI LIU, WEI-CHEN CHU, CHIA-TIEN WU, TAI-I YANG
  • Publication number: 20200052016
    Abstract: An optical apparatus including a semiconductor substrate; a first light absorption region supported by the semiconductor substrate, the first light absorption region including germanium and configured to absorb photons and to generate photo-carriers from the absorbed photons; a first layer supported by at least a portion of the semiconductor substrate and the first light absorption region, the first layer being different from the first light absorption region; one or more first switches controlled by a first control signal, the one or more first switches configured to collect at least a portion of the photo-carriers based on the first control signal; and one or more second switches controlled by a second control signal, the one or more second switches configured to collect at least a portion of the photo-carriers based on the second control signal, wherein the second control signal is different from the first control signal.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
    Inventors: Yun-Chung Na, Che-Fu Liang, Szu-Lin Cheng, Shu-Lu Chen, Kuan-Chen Chu, Chung-Chih Lin, Han-Din Liu