Patents by Inventor Cheng-Wei Chang

Cheng-Wei Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230268173
    Abstract: A method of forming a semiconductor device includes forming a first conductive feature on a bottom surface of an opening through a dielectric layer. The forming the first conductive feature leaves seeds on sidewalls of the opening. A treatment process is performed on the seeds to form treated seeds. The treated seeds are removed with a cleaning process. The cleaning process may include a rinse with deionized water. A second conductive feature is formed to fill the opening.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Inventors: Cheng-Wei Chang, Min-Hsiu Hung, Chun-I Tsai, Ken-Yu Chang, Yi-Ying Liu
  • Publication number: 20230231025
    Abstract: In an embodiment, a device includes: a first insulating fin; a second insulating fin; a nanostructure between the first insulating fin and the second insulating fin; and a gate structure wrapping around the nanostructure, a top surface of the gate structure disposed above a top surface of the first insulating fin, the top surface of the gate structure disposed below a top surface of the second insulating fin.
    Type: Application
    Filed: March 3, 2022
    Publication date: July 20, 2023
    Inventors: Cheng-Wei Chang, Shahaji B. More, Yi-Ying Liu, Shuen-Shin Liang, Sung-Li Wang
  • Patent number: 11670499
    Abstract: A method of forming a semiconductor device includes forming a first conductive feature on a bottom surface of an opening through a dielectric layer. The forming the first conductive feature leaves seeds on sidewalls of the opening. A treatment process is performed on the seeds to form treated seeds. The treated seeds are removed with a cleaning process. The cleaning process may include a rinse with deionized water. A second conductive feature is formed to fill the opening.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Wei Chang, Min-Hsiu Hung, Chun-I Tsai, Ken-Yu Chang, Yi-Ying Liu
  • Patent number: 11652149
    Abstract: A method according to the present disclosure includes receiving a workpiece including a gate structure, a first source/drain (S/D) feature, a second S/D feature, a first dielectric layer over the gate structure, the first S/D feature, the second S/D feature, a first S/D contact over the first S/D feature, a second S/D contact over the second S/D feature, a first etch stop layer (ESL) over the first dielectric layer, and a second dielectric layer over the first ESL, forming a S/D contact via through the second dielectric layer and the first ESL to couple to the first S/D contact, forming a gate contact opening through the second dielectric layer, the first ESL, and the first dielectric layer to expose the gate structure, and forming a common rail opening adjoining the gate contact opening to expose the second S/D contact, and forming a common rail contact in the common rail opening.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Wei Chang, Hong-Ming Wu, Chen-Yuan Kao, Li-Hsiang Chao, Yi-Ying Liu
  • Publication number: 20230138401
    Abstract: In method of manufacturing a semiconductor device, a source/drain epitaxial layer is formed, one or more dielectric layers are formed over the source/drain epitaxial layer, an opening is formed in the one or more dielectric layers to expose the source/drain epitaxial layer, a first silicide layer is formed on the exposed source/drain epitaxial layer, a second silicide layer different from the first silicide layer is formed on the first silicide layer, and a source/drain contact is formed over the second silicide layer.
    Type: Application
    Filed: January 18, 2022
    Publication date: May 4, 2023
    Inventors: Cheng-Wei CHANG, Shahaji B. MORE, Yi-Ying LIU, Yueh-Ching PAI
  • Publication number: 20230118990
    Abstract: A method of manufacturing a semiconductor device includes alternately stacking first semiconductor layers and second semiconductor layers over a substrate, patterning the first and second semiconductor layers into a fin structure, forming a dielectric layer across the fin structure, and removing the first semiconductor layers of the fin structure thereby forming gaps between the second semiconductor layers of the fin structure. The method also includes depositing a first metal layer to wrap around the second semiconductor layers thereby forming voids between opposing sidewalls of the dielectric layer, recessing the first metal layer, forming a blocking layer over the recessed first metal layer thereby covering the voids, and depositing a second metal layer over the blocking layer.
    Type: Application
    Filed: April 15, 2022
    Publication date: April 20, 2023
    Inventors: Cheng-Wei Chang, Shahaji B. More, Yi-Ying Liu
  • Publication number: 20230124549
    Abstract: An exemplary method includes forming a semiconductor fin having a semiconductor layer stack over a semiconductor mesa. The semiconductor layer stack includes a first semiconductor layer, a second semiconductor layer, and the first semiconductor layer is between the semiconductor mesa and the second semiconductor layer. The method further includes forming an isolation feature adjacent the semiconductor mesa and forming a semiconductor cladding layer along a sidewall of the semiconductor layer stack. The semiconductor cladding layer extends below a top surface of the semiconductor mesa and a portion of the isolation feature is between the semiconductor cladding layer and a sidewall of the semiconductor mesa. The method further includes, in a channel region, replacing the first semiconductor layer of the semiconductor fin and the semiconductor cladding layer with a gate stack. The portion of the isolation feature is between the gate stack and the sidewall of the semiconductor mesa.
    Type: Application
    Filed: March 11, 2022
    Publication date: April 20, 2023
    Inventors: Cheng-Wei Chang, Shahaji B. More, Yi-Ying Liu, Shuen-Shin Liang, Sung-Li Wang
  • Publication number: 20230119813
    Abstract: A semiconductor structure includes an n-type epitaxial source/drain feature (NEPI) and a p-type epitaxial source/drain feature (PEPI) over a substrate, wherein a top surface of the NEPI is lower than a top surface of the PEPI. The semiconductor structure further includes a metal compound feature disposed on the top surface of the NEPI and the top surface of the PEPI. The metal compound feature extends continuously from the top surface of the NEPI to the top surface of the PEPI. The semiconductor structure further includes a contact feature disposed on the metal compound feature and a via structure disposed over the contact feature.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Shahaji B. More, Cheng-Wei Chang
  • Patent number: 11581259
    Abstract: The present disclosure describes a method for the fabrication of ruthenium conductive structures over cobalt conductive structures. In some embodiments, the method includes forming a first opening in a dielectric layer to expose a first cobalt contact and filling the first opening with ruthenium metal to form a ruthenium contact on the first cobalt contact. The method also includes forming a second opening in the dielectric layer to expose a second cobalt contact and a gate structure and filling the second opening with tungsten to form a tungsten contact on the second cobalt contact and the gate structure. Further, the method includes forming a copper conductive structure on the ruthenium contact and the tungsten contact, where the copper from the copper conductive structure is in contact with the ruthenium metal from the ruthenium contact.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: February 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Wei Chang, Chien-Shun Liao, Sung-Li Wang, Shuen-Shin Liang, Shu-Lan Chang, Yi-Ying Liu, Chia-Hung Chu, Hsu-Kai Chang
  • Patent number: 11563083
    Abstract: A semiconductor device with dual side source/drain (S/D) contact structures and methods of fabricating the same are disclosed. The semiconductor device includes first and second S/D regions, a nanostructured channel region disposed between the first and second S/D regions, a gate structure surrounding the nanostructured channel region, first and second contact structures disposed on first surfaces of the first and second S/D regions, a third contact structure disposed on a second surface of the first S/D region, and an etch stop layer disposed on a second surface of the second S/D region. The third contact structure includes a metal silicide layer, a silicide nitride layer disposed on the metal silicide layer, and a conductive layer disposed on the silicide nitride layer.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: January 24, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Wei Chang, Shuen-Shin Liang, Sung-Li Wang, Hsu-Kai Chang, Chia-Hung Chu, Chien-Shun Liao, Yi-Ying Liu
  • Publication number: 20230016515
    Abstract: The present disclosure describes a method for the fabrication of ruthenium conductive structures over cobalt conductive structures. In some embodiments, the method includes forming a first opening in a dielectric layer to expose a first cobalt contact and filling the first opening with ruthenium metal to form a ruthenium contact on the first cobalt contact. The method also includes forming a second opening in the dielectric layer to expose a second cobalt contact and a gate structure and filling the second opening with tungsten to form a tungsten contact on the second cobalt contact and the gate structure. Further, the method includes forming a copper conductive structure on the ruthenium contact and the tungsten contact, where the copper from the copper conductive structure is in contact with the ruthenium metal from the ruthenium contact.
    Type: Application
    Filed: July 28, 2022
    Publication date: January 19, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Wei Chang, Chien-Shun Liao, Sung-Li Wang, Shuen-Shin Liang, Shu-Lan Chang, Yi-Ying Liu, Chia-Hung Chu, Hsu-Kai Chang
  • Publication number: 20230009981
    Abstract: A titanium precursor is used to selectively form a titanium silicide (TiSix) layer in a semiconductor device. A plasma-based deposition operation is performed in which the titanium precursor is provided into an opening, and a reactant gas and a plasma are used to cause silicon to diffuse to a top surface of a transistor structure. The diffusion of silicon results in the formation of a silicon-rich surface of the transistor structure, which increases the selectivity of the titanium silicide formation relative to other materials of the semiconductor device. The titanium precursor reacts with the silicon-rich surface to form the titanium silicide layer. The selective titanium silicide layer formation results in the formation of a titanium silicon nitride (TiSixNy) on the sidewalls in the opening, which enables a conductive structure such as a metal source/drain contact to be formed in the opening without the addition of another barrier layer.
    Type: Application
    Filed: February 16, 2022
    Publication date: January 12, 2023
    Inventors: Cheng-Wei CHANG, Chia-Hung CHU, Hsu-Kai CHANG, Sung-Li WANG, Kuan-Kan HU, Shuen-Shin LIANG, Kao-Feng LIN, Hung Pin LU, Yi-Ying LIU, Chuan-Hui SHEN
  • Patent number: 11532522
    Abstract: A semiconductor structure includes an n-type epitaxial source/drain feature (NEPI) and a p-type epitaxial source/drain feature (PEPI) over a substrate, wherein a top surface of the NEPI is lower than a top surface of the PEPI. The semiconductor structure further includes a metal compound feature disposed on the top surface of the NEPI and the top surface of the PEPI; a contact feature disposed on the metal compound feature and over both the NEPI and the PEPI; and a via structure disposed over the contact feature and over the NEPI, wherein the via structure is partially in the contact feature.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shahaji B. More, Cheng-Wei Chang
  • Publication number: 20220375868
    Abstract: A semiconductor device includes a gate electrode, a source/drain structure, a lower contact contacting either of the gate electrode or the source/drain structure, and an upper contact disposed in an opening formed in an interlayer dielectric (ILD) layer and in direct contact with the lower contact. The upper contact is in direct contact with the ILD layer without an interposing conductive barrier layer, and the upper contact includes ruthenium.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 24, 2022
    Inventors: Cheng-Wei CHANG, Chia-Hung CHU, Kao-Feng LIN, Hsu-Kai CHANG, Shuen-Shin LIANG, Sung-Li WANG, Yi-Ying LIU, Po-Nan YEH, Yu Shih WANG, U-Ting CHIU, Chun-Neng LIN, Ming-Hsi YEH
  • Publication number: 20220367660
    Abstract: The present disclosure describes a method for forming metallization layers that include a ruthenium metal liner and a cobalt metal fill. The method includes depositing a first dielectric on a substrate having a gate structure and source/drain (S/D) structures, forming an opening in the first dielectric to expose the S/D structures, and depositing a ruthenium metal on bottom and sidewall surfaces of the opening. The method further includes depositing a cobalt metal on the ruthenium metal to fill the opening, reflowing the cobalt metal, and planarizing the cobalt and ruthenium metals to form S/D conductive structures with a top surface coplanar with a top surface of the first dielectric.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 17, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin Liang, Chih-Chien Chi, Chien-Shun Liao, Keng-Chu Lin, Kai-Ting Huang, Sung-Li Wang, Yi-Ying Liu, Chia-Hung Chu, Hsu-Kai Chang, Cheng-Wei Chang
  • Publication number: 20220367348
    Abstract: In some embodiments, the present disclosure relates to an integrated circuit device. A transistor structure includes a gate electrode separated from a substrate by a gate dielectric and a pair of source/drain regions disposed within the substrate on opposite sides of the gate electrode. A lower conductive plug is disposed through a lower inter-layer dielectric (ILD) layer and contacting a first source/drain region. A capping layer is disposed directly on the lower conductive plug. An upper inter-layer dielectric (ILD) layer is disposed over the capping layer and the lower ILD layer. An upper conductive plug is disposed through the upper ILD layer and directly on the capping layer.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 17, 2022
    Inventors: Cheng-Wei Chang, Sung-Li Wang, Yi-Ying Liu, Chia-Hung Chu, Fang-Wei Lee
  • Patent number: 11462471
    Abstract: In some embodiments, the present disclosure relates to an integrated circuit device. A transistor structure includes a gate electrode separated from a substrate by a gate dielectric and a pair of source/drain regions disposed within the substrate on opposite sides of the gate electrode. A lower conductive plug is disposed through a lower inter-layer dielectric (ILD) layer and contacting a first source/drain region. A capping layer is disposed directly on the lower conductive plug. An upper inter-layer dielectric (ILD) layer is disposed over the capping layer and the lower ILD layer. An upper conductive plug is disposed through the upper ILD layer and directly on the capping layer.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: October 4, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Wei Chang, Sung-Li Wang, Yi-Ying Liu, Chia-Hung Chu, Fang-Wei Lee
  • Publication number: 20220301858
    Abstract: A method of forming a semiconductor device includes forming a first conductive feature on a bottom surface of an opening through a dielectric layer. The forming the first conductive feature leaves seeds on sidewalls of the opening. A treatment process is performed on the seeds to form treated seeds. The treated seeds are removed with a cleaning process. The cleaning process may include a rinse with deionized water. A second conductive feature is formed to fill the opening.
    Type: Application
    Filed: March 18, 2021
    Publication date: September 22, 2022
    Inventors: Cheng-Wei Chang, Min-Hsiu Hung, Chun-I Tsai, Ken-Yu Chang, Yi-Ying Liu
  • Patent number: 11424185
    Abstract: A semiconductor device includes a gate electrode, a source/drain structure, a lower contact contacting either of the gate electrode or the source/drain structure, and an upper contact disposed in an opening formed in an interlayer dielectric (ILD) layer and in direct contact with the lower contact. The upper contact is in direct contact with the ILD layer without an interposing conductive barrier layer, and the upper contact includes ruthenium.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: August 23, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Wei Chang, Chia-Hung Chu, Kao-Feng Lin, Hsu-Kai Chang, Shuen-Shin Liang, Sung-Li Wang, Yi-Ying Liu, Po-Nan Yeh, Yu Shih Wang, U-Ting Chiu, Chun-Neng Lin, Ming-Hsi Yeh
  • Publication number: 20220254867
    Abstract: An electronic device includes a flexible substrate and a conductive wire. The conductive wire is disposed on the flexible substrate and includes a metal portion and a plurality of openings disposed in the metal portion. The metal portion includes a plurality of extending portions and a plurality of joint portions, and each of the openings is surrounded by two of the plurality of extending portions and two of the plurality of joint portions. A ratio of a sum of widths of the plurality of extending portions to a sum of widths of the plurality of joint portions is in a range from 0.8 to 1.2.
    Type: Application
    Filed: April 28, 2022
    Publication date: August 11, 2022
    Applicant: InnoLux Corporation
    Inventors: Ya-Wen Lin, Chien-Chih Chen, Yen-Hsi Tu, Cheng-Wei Chang, Shu-Hui Yang