Patents by Inventor Chi-Ming Chen

Chi-Ming Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11127725
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a first light-emitting diode (LED) layer including a first LED of a first color type, the first LED layer having a first side and a second side opposite to the first side; a second LED layer over the first LED layer, the second LED layer including a second LED of a second color type, and the second LED layer having a first side and a second side opposite to the first side; and a third LED layer over the second LED layer, the third LED layer including a third LED of a third color type, and the third LED layer having a first side and a second side opposite to the first side; wherein the first color type, the second color type, and the third color type are different from each other.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: September 21, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ping-Yin Liu, Yeong-Jyh Lin, Chi-Ming Chen
  • Publication number: 20210273084
    Abstract: Various embodiments of the present application are directed towards a group III-V device including a rough buffer layer. The rough buffer layer overlies a silicon substrate, a buffer structure overlies the rough buffer layer, and a heterojunction structure overlies the buffer structure. The buffer structure causes band bending and formation of a two-dimensional hole gas (2DHG) in the rough buffer layer. The rough buffer layer includes silicon or some other suitable semiconductor material and, in some embodiments, is doped. A top surface of the rough buffer layer and/or a bottom surface of the rough buffer layer is/are rough to promote carrier scattering along the top and bottom surfaces. The carrier scattering reduces carrier mobility and increases resistance at the 2DHG. The increased resistance increases an overall resistance of the silicon substrate, which reduces substrate loses and increases a power added efficiency (PAE).
    Type: Application
    Filed: March 2, 2020
    Publication date: September 2, 2021
    Inventors: Kuei-Ming Chen, Chi-Ming Chen, Chung-Yi Yu
  • Publication number: 20210184011
    Abstract: A method including forming a III-V compound layer on a substrate and implanting a main dopant in the III-V compound layer to form source and drain regions. The method further includes implanting a group V species into the source and drain regions. A semiconductor device including a substrate and a III-V compound layer over the substrate. The semiconductor device further includes source and drain regions in the III-V layer, wherein the source and drain regions comprises a first dopants and a second dopant, and the second dopant comprises a group V material.
    Type: Application
    Filed: February 3, 2021
    Publication date: June 17, 2021
    Inventors: Han-Chin Chiu, Chi-Ming Chen, Chung-Yi Yu, Chen-Hao Chiang
  • Patent number: 10991819
    Abstract: The present disclosure, in some embodiments, relates to a transistor device. The transistor device includes a layer of GaN over a substrate. A mobility-enhancing layer of AlzGa(1-z)N is over the layer of GaN and has a first molar fraction z in a first range of between approximately 0.25 and approximately 0.4. A resistance-reducing layer of AlxGa(1-x)N is over the mobility-enhancing layer and has a second molar fraction x in a second range of between approximately 0.1 and approximately 0.15. A source has a source contact and an underlying source region. A drain has a drain contact and an underlying drain region. The source and drain regions extend through the resistance-reducing layer of AlxGa(1-x)N and into the mobility-enhancing layer of AlzGa(1-z)N. The source and drain regions have bottoms over a bottom of the mobility-enhancing layer of AlzGa(1-z)N. A gate structure is laterally between the source and drain contacts.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: April 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Chun Liu, Chung-Yi Yu, Chi-Ming Chen, Chen-Hao Chiang
  • Publication number: 20210119011
    Abstract: Some embodiments of the present disclosure relate to a high electron mobility transistor (HEMT) which includes a heterojunction structure arranged over a semiconductor substrate. The heterojunction structure includes a binary III/V semiconductor layer is a first III-nitride material and a ternary III/V semiconductor layer arranged over the binary III/V semiconductor layer and is a second III-nitride material. Source and drain regions are arranged over the ternary III/V semiconductor layer. A gate structure is arranged over the heterojunction structure and arranged between the source and drain regions. The gate structure is a third III-nitride material. A first passivation layer directly contacts an entire sidewall surface of the gate structure and is a fourth III-nitride material. The entire sidewall surface has no dangling bond. A second passivation layer is conformally disposed along the first passivation layer, the second passivation layer has no physical contact with the gate structure.
    Type: Application
    Filed: December 8, 2020
    Publication date: April 22, 2021
    Inventors: Han-Chin Chiu, Chi-Ming Chen, Cheng-Yuan Tsai, Fu-Wei Yao
  • Patent number: 10977001
    Abstract: A processing unit performs multiply-and-accumulate (MAC) operations on asymmetrically quantized data. The processing unit includes a MAC hardware unit to perform the MAC operations on a first data sequence and a second data sequence to generate an asymmetric MAC output. Both the first data sequence and the second data sequence are asymmetrically quantized. The processing unit further includes an accumulator hardware unit to accumulate the first data sequence concurrently with the MAC operations to generate an accumulated output. The processing unit further includes a multiply-and-add (MAD) hardware unit to multiply the accumulated output with a second offset to generate a multiplication output, and to add the multiplication output, the asymmetric MAC output and a pre-computed value calculated before runtime to generate a final output. The second offset indicates an amount of asymmetry of the second data sequence with respect to zero.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: April 13, 2021
    Assignee: MediaTek Inc.
    Inventors: Chien-Hung Lin, Pei-Kuei Tsung, Chi-Ming Chen, Meng-Hsuan Cheng, ShengJe Hung
  • Patent number: 10937878
    Abstract: A method including forming a III-V compound layer on a substrate and implanting a main dopant in the III-V compound layer to form source and drain regions. The method further includes implanting a group V species into the source and drain regions. A semiconductor device including a substrate and a III-V compound layer over the substrate. The semiconductor device further includes source and drain regions in the III-V layer, wherein the source and drain regions comprises a first dopants and a second dopant, and the second dopant comprises a group V material.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: March 2, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Han-Chin Chiu, Chi-Ming Chen, Chung-Yi Yu, Chen-Hao Chiang
  • Patent number: 10937900
    Abstract: The present disclosure provides a semiconductor structure, including a substrate, a first III-V layer over the substrate, having a first band gap, and a second III-V layer over the first III-V layer, having a second band gap. The second III-V layer includes a first surface in contact with the first III-V layer and a second surface opposite to the first surface. The second band gap at the second surface is greater than the second band gap at the first surface. The present disclosure also provides a manufacturing method of the aforesaid semiconductor structure.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: March 2, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Po-Chun Liu, Chi-Ming Chen, Yao-Chung Chang, Jiun-Lei Jerry Yu, Chen-Hao Chiang, Chung-Yi Yu
  • Publication number: 20210050209
    Abstract: A high electron mobility transistor includes: a first semiconductor layer over a substrate, and a second semiconductor layer over the first semiconductor layer, the second semiconductor layer having a band gap discontinuity with the first semiconductor layer, and at the first semiconductor layer and/or the second conductive layer includes indium. A top layer is over the second semiconductor layer, and a metal layer is over, and extends into, the top layer, the top layer separating the metal layer from the second semiconductor layer. A gate electrode is over the top layer, a third semiconductor layer being between the gate electrode and the top layer, where a sidewall of the third semiconductor layer and a sidewall of the metal layer are separated. A source and drain are on opposite sides of the gate electrode, the top layer extending continuously from below the source, below the gate electrode, and below the drain.
    Type: Application
    Filed: November 4, 2020
    Publication date: February 18, 2021
    Inventors: Po-Chun LIU, Chung-Chieh HSU, Chi-Ming CHEN, Chung-Yi YU, Chen-Hao CHIANG, Min-Chang CHING
  • Publication number: 20210036140
    Abstract: A semiconductor device includes a doped substrate and a seed layer in direct contact with the substrate. The seed layer includes a first seed sublayer having a first lattice structure. The first seed layer is doped with carbon. The seed layer further includes a second seed sublayer over the first see layer, wherein the second seed layer has a second lattice structure. The semiconductor device further includes a graded layer in direct contact with the seed layer. The graded layer includes a first graded sublayer including AlGaN having a first Al:Ga ratio; a second graded sublayer including AlGaN having a second Al:Ga ratio different from the first Al:Ga ratio; and a third graded sublayer over including AlGaN having a third Al:Ga ratio different from the second Al:Ga ratio. The semiconductor device includes a channel layer over the graded layer. The semiconductor device includes an active layer over the channel layer.
    Type: Application
    Filed: October 20, 2020
    Publication date: February 4, 2021
    Inventors: Chi-Ming CHEN, Po-Chun LIU, Chung-Yi YU, Chia-Shiung TSAI, Ru-Liang LEE
  • Publication number: 20210028016
    Abstract: A semiconductor structure includes a substrate. The semiconductor structure further includes a buffer layer over the substrate, wherein the buffer layer comprises a plurality of III-V layers, and a dopant type of each III-V layer of the plurality of III-V layers is opposite to a dopant of adjacent III-V layers of the plurality of III-V layers. The semiconductor structure further includes an active layer over the buffer layer. The semiconductor structure further includes a dielectric layer over the active layer.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 28, 2021
    Inventors: Chi-Ming CHEN, Po-Chun LIU, Chung-Yi YU, Chia-Shiung TSAI
  • Publication number: 20200402797
    Abstract: A semiconductor structure includes a substrate. The semiconductor structure further includes a first III-V layer over the substrate, wherein the first III-V layer includes a first dopant type. The semiconductor structure further includes a second III-V layer over the first III-V layer, wherein the second III-V layer has a second dopant type opposite the first dopant type. The semiconductor structure further includes a third III-V layer over the second III-V layer, wherein the third III-V layer has the first dopant type. The semiconductor structure further includes a fourth III-V layer over the third III-V layer, the fourth III-V layer having the second dopant type. The semiconductor structure further includes an active layer over the fourth III-V layer. The semiconductor structure further includes a dielectric layer over the active layer.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Inventors: Chi-Ming CHEN, Po-Chun LIU, Chung-Yi YU, Chia-Shiung TSAI
  • Patent number: 10868136
    Abstract: Some embodiments of the present disclosure relate to a HEMT. The HEMT includes a heterojunction structure having a second III/V semiconductor layer arranged over a first III/V semiconductor layer. Source and drain regions are arranged over the substrate and spaced apart laterally from one another. A gate structure is arranged over the heterojunction structure and arranged between the source and drain regions. A first passivation layer is disposed about sidewalls of the gate structure and extending over an upper surface of the gate structure, wherein the first passivation layer is made of a III-V material. A second passivation layer overlies the first passivation layer and made of a material composition different from a material composition of the first passivation layer. The second passivation layer has a thickness greater than that of the first passivation layer.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Han-Chin Chiu, Chi-Ming Chen, Cheng-Yuan Tsai, Fu-Wei Yao
  • Patent number: 10867792
    Abstract: A high electron mobility transistor (HEMT) includes a substrate, and a channel layer over the substrate, wherein and at least one of the channel layer or the active layer comprises indium. The HEMT further includes an active layer over the channel layer. The active layer has a band gap discontinuity with the channel layer.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Chun Liu, Chi-Ming Chen, Min-Chang Ching, Chen-Hao Chiang, Chung-Yi Yu, Chung-Chieh Hsu
  • Patent number: 10821487
    Abstract: A cleaning apparatus for concentration controller of coating machine may include a pulse bubble generator and a container used for cleaning a concentration controller of a coating machine and a tube thereof. The pulse bubble generator has a bubble-generating end connected to the container through a pipe, and the container is filled with a plentiful detergent. The pulse bubble generator is configured to pump air into the detergent with a pulse per time, and a large amount of detergent bubbles are adapted to be generated in the container. The detergent bubbles are configured to be pumped by the concentration controller into the tube and the concentration controller so as to complete cleaning effect of the tube and the concentration controller.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: November 3, 2020
    Inventors: Chi-Ming Chen, Yi-Nung Chung
  • Patent number: 10804101
    Abstract: A semiconductor structure including a substrate and a nucleation layer over the substrate. The semiconductor structure further includes a first III-V layer over the nucleation layer, wherein the first III-V layer includes a first dopant type. The semiconductor structure further includes one or more sets of III-V layers over the first III-V layer. Each set of the one or more sets of III-V layers includes a lower III-V layer, wherein the lower III-V layer has a second dopant type opposite the first dopant type, and an upper III-V layer on the lower III-V layer, wherein the upper III-V layer has the first dopant type. The semiconductor structure further includes a second III-V layer over the one or more sets of III-V layers, the second III-V layer having the second dopant type.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: October 13, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai
  • Publication number: 20200197986
    Abstract: A cleaning apparatus for concentration controller of coating machine may include a pulse bubble generator and a container used for cleaning a concentration controller of a coating machine and a tube thereof. The pulse bubble generator has a bubble-generating end connected to the container through a pipe, and the container is filled with a plentiful detergent. The pulse bubble generator is configured to pump air into the detergent with a pulse per time, and a large amount of detergent bubbles are adapted to be generated in the container. The detergent bubbles are configured to be pumped by the concentration controller into the tube and the concentration controller so as to complete cleaning effect of the tube and the concentration controller.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Applicants: Department of Electrical Engineering, National Changhua University of Education
    Inventors: Chi-Ming Chen, Yi-Nung Chung
  • Publication number: 20200185369
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a first light-emitting diode (LED) layer including a first LED of a first color type, the first LED layer having a first side and a second side opposite to the first side; a second LED layer over the first LED layer, the second LED layer including a second LED of a second color type, and the second LED layer having a first side and a second side opposite to the first side; and a third LED layer over the second LED layer, the third LED layer including a third LED of a third color type, and the third LED layer having a first side and a second side opposite to the first side; wherein the first color type, the second color type, and the third color type are different from each other.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 11, 2020
    Inventors: PING-YIN LIU, YEONG-JYH LIN, CHI-MING CHEN
  • Patent number: D881678
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: April 21, 2020
    Assignee: Taiwan Fu Hsing Industrial Co., Ltd.
    Inventors: Chao-Ming Huang, Chi-Ming Chen
  • Patent number: D882375
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: April 28, 2020
    Assignee: Taiwan Fu Hsing Industrial Co., Ltd.
    Inventor: Chi-Ming Chen