Patents by Inventor Chia-Chung Chen

Chia-Chung Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9184256
    Abstract: Apparatus and methods for a MOS varactor structure are disclosed. An apparatus is provided, comprising an active area defined in a portion of a semiconductor substrate; a doped well region in the active area extending into the semiconductor substrate; at least two gate structures disposed in parallel over the doped well region; source and drain regions disposed in the well region formed on opposing sides of the gate structures; a gate connector formed in a first metal layer overlying the at least two gate structures and electrically coupling the at least two gate structures; source and drain connectors formed in a second metal layer and electrically coupled to the source and drain regions; and interlevel dielectric material separating the source and drain connectors in the second metal layer from the gate connector formed in the first metal layer. Methods for forming the structure are disclosed.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: November 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Feng Huang, Chia-Chung Chen
  • Patent number: 9178058
    Abstract: A device includes a semiconductor substrate of a first conductivity type, and a deep well region in the semiconductor substrate, wherein the deep well region is of a second conductivity type opposite to the first conductivity type. The device further includes a well region of the first conductivity type over the deep well region. The semiconductor substrate has a top portion overlying the well region, and a bottom portion underlying the deep well region, wherein the top portion and the bottom portion are of the first conductivity type, and have a high resistivity. A gate dielectric is over the semiconductor substrate. A gate electrode is over the gate dielectric. A source region and a drain region extend into the top portion of the semiconductor substrate. The source region, the drain region, the gate dielectric, and the gate electrode form a Radio Frequency (RF) switch.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: November 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chung Chen, Chi-Feng Huang, Shu Fang Fu, Tzu-Jin Yeh, Chewn-Pu Jou
  • Patent number: 9159802
    Abstract: A device includes a substrate, a gate dielectric over the substrate, and a gate electrode over the gate dielectric. A drain region and a source region are disposed on opposite sides of the gate electrode. Insulation regions are disposed in the substrate, wherein edges of the insulation regions are in contact with edges of the drain region and the source region. A dielectric mask includes a portion overlapping a first interface between the drain region and an adjoining portion of the insulation regions. A drain silicide region is disposed over the drain region, wherein an edge of the silicide region is substantially aligned to an edge of the first portion of the dielectric mask.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: October 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chu-Fu Chen, Chia-Chung Chen, Chi-Feng Huang, Victor Chiang Liang
  • Patent number: 9111765
    Abstract: One or more techniques or systems for forming an integrated circuit (IC) or associated IC structure are provided herein. In some embodiments, the IC includes a junction gate field effect transistor (JFET) and a lateral vertical bipolar junction transistor (LVBJT). For example, the JFET and the LVBJT are formed in a same region, such as a substrate. In some embodiments, the JFET and the LVBJT are at least one of adjacent or share one or more features. In this manner, a reliable IC is provided, thus enabling power amplification, for example.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: August 18, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chi-Feng Huang, Chia-Chung Chen
  • Publication number: 20150228725
    Abstract: A fin field effect transistor (FinFET), and a method of fabrication, is introduced. In an embodiment, trenches are formed in a substrate, wherein a region between adjacent trenches defines a fin. A dielectric material is formed in the trenches. The fins are doped to form source, drain and buried channel regions. A gate stack is formed over the buried channel regions. Contacts are formed to provide electrical contacts to the source/drain regions and the gate.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 13, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Fu-Huan Tsai, Chia-Chung Chen, Feng Yuan, Chi-Feng Huang, Victor Chiang Liang
  • Patent number: 9071203
    Abstract: A circuit includes a first CMOS device forming a gain stage of a power amplifier and a second CMOS device forming a voltage buffer stage of the power amplifier. The first CMOS device includes a first doped well formed in a substrate, a first drain region and a first source region spaced laterally from one another in the first doped well, and a first gate structure formed over a first channel region in the first doped well. The second CMOS device includes a second doped well formed in the semiconductor substrate such that the first doped well and the second is disposed adjacent to the second doped well. A second drain region and a second source region are spaced laterally from one another in the second doped well, and a second gate structure formed over a second channel region in the second doped well.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: June 30, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tzu-Jin Yeh, Chewn-Pu Jou, Jun-De Jin, Hsieh-Hung Hsieh, Chia-Chung Chen
  • Publication number: 20150108582
    Abstract: A transistor includes a substrate having an upper surface, a fin structure protruding from the upper surface of the substrate, an isolation structure over the upper surface of the substrate and surrounding a lower portion of the fin structure, and a first doped region at least partially embedded in an upper portion of the fin structure. The fin structure extends along a first direction. The first doped region has a first type doping different from that of the fin structure.
    Type: Application
    Filed: June 20, 2014
    Publication date: April 23, 2015
    Inventors: Chia-Chung CHEN, Chi-Feng HUANG, Victor Chiang LIANG
  • Publication number: 20150108581
    Abstract: A transistor includes a substrate having an upper surface, a fin structure protruding from the upper surface of the substrate, a first isolation structure over the upper surface of the substrate, and a second isolation structure. The fin structure extends along a first direction and comprising a lower portion and an upper portion. The first isolation structure surrounds the lower portion of the fin structure. The second isolation structure is at least partially embedded in the upper portion of the fin structure.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 23, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Chia-Chung CHEN, Fu-Huan TSAI, Feng YUAN
  • Publication number: 20150104925
    Abstract: A device includes a substrate having a front surface and a back surface; an integrated circuit device at the front surface of the substrate; and a metal plate on the back surface of the substrate, wherein the metal plate overlaps substantially an entirety of the integrated circuit device. A guard ring extends into the substrate and encircles the integrated circuit device. The guard ring is formed of a conductive material. A through substrate via (TSV) penetrates through the substrate and electrically couples to the metal plate.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 16, 2015
    Inventors: Chia-Chung Chen, Chewn-Pu Jou, Sally Liu
  • Patent number: 8946832
    Abstract: A representative filter comprises a silicon-on-insulator substrate having a top surface, a metal shielding positioned above the top surface of the silicon-on-insulator substrate, and a band-pass filter device positioned above the metal shielding. The band-pass filter device includes a first port, a second port, and a coupling metal positioned between the first and second ports.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Chung Chen, Chewn-Pu Jou, Chin-Wei Kuo
  • Publication number: 20150021676
    Abstract: A high voltage metal-oxide-metal (HV-MOM) device includes a substrate, a deep well in the substrate and at least one high voltage well in the substrate over the deep well. The HV-MOM device further includes a dielectric layer over each high voltage well of the at least one high voltage well and a gate structure over the dielectric layer. The HV-MOM device further includes an inter-layer dielectric (ILD) layer over the substrate, the ILD layer surrounding the gate structure. The HV-MOM device further includes a first inter-metal dielectric (IMD) layer over the ILD layer and a first metal feature in the first IMD layer, wherein the first metal feature is part of a MOM capacitor.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 22, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Chung CHEN, Shu Fang FU, Chang-Sheng LIAO
  • Publication number: 20150015336
    Abstract: A circuit includes a first CMOS device forming a gain stage of a power amplifier and a second CMOS device forming a voltage buffer stage of the power amplifier. The first CMOS device includes a first doped well formed in a substrate, a first drain region and a first source region spaced laterally from one another in the first doped well, and a first gate structure formed over a first channel region in the first doped well. The second CMOS device includes a second doped well formed in the semiconductor substrate such that the first doped well and the second is disposed adjacent to the second doped well. A second drain region and a second source region are spaced laterally from one another in the second doped well, and a second gate structure formed over a second channel region in the second doped well.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 15, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tzu-Jin YEH, Chewn-Pu JOU, Jun-De JIN, Hsieh-Hung HSIEH, Chia-Chung CHEN
  • Patent number: 8928127
    Abstract: A device includes a substrate having a front surface and a back surface; an integrated circuit device at the front surface of the substrate; and a metal plate on the back surface of the substrate, wherein the metal plate overlaps substantially an entirety of the integrated circuit device. A guard ring extends into the substrate and encircles the integrated circuit device. The guard ring is formed of a conductive material. A through substrate via (TSV) penetrates through the substrate and electrically couples to the metal plate.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chung Chen, Chewn-Pu Jou, Sally Liu
  • Patent number: 8921978
    Abstract: An isolation structure in a semiconductor device absorbs electronic noise and prevents substrate leakage currents from reaching other devices and signals. The isolation structure provides a duality of deep N-well (“DNW”) isolation structures surrounding an RF device or other source of electronic noise. The DNW isolation structures extend into the substrate at a depth of at least about 2.5 ?m and may be coupled to VDD. P+ guard rings are also provided in some embodiments and are provided inside, outside or between the dual DNW isolation structures.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Feng Huang, Chia-Chung Chen, Victor Chiang Liang, Hsiao-Chun Lee
  • Publication number: 20140332857
    Abstract: A junction gate field-effect transistor (JFET) includes a substrate, a source region formed in the substrate, a drain region formed in the substrate, a channel region formed in the substrate, and at least one gate region formed in the substrate. The channel region connects the source and drain regions. The at least one gate region contacts one of the source and drain regions at an interface, and the at least one gate region is isolated from the other of the source and drain regions. A dielectric layer covers the interface while exposing portions of the gate region and the one of the source and drain regions.
    Type: Application
    Filed: July 2, 2014
    Publication date: November 13, 2014
    Inventors: Chia-Chung CHEN, Chi-Feng HUANG, Victor Chiang LIANG
  • Publication number: 20140295640
    Abstract: Methods of forming semiconductor devices. The method includes forming a capacitor array comprising a plurality of cells in a two-dimensional grid. The step of forming includes forming a plurality of operational capacitors in a first subset of the plurality of cells along a diagonal of the array, the plurality of operational capacitors comprising a first operational capacitor formed in a cell at a first edge of the capacitor array and at a first edge of the diagonal of the capacitor array. The step of forming also includes forming a plurality of dummy patterns about the plurality of operational capacitors in the capacitor array in a second subset of the plurality of cells to achieve symmetry in the grid about the diagonal. The method also includes electrically coupling each one of the plurality of operational capacitors to another one of the plurality of operational capacitors.
    Type: Application
    Filed: June 12, 2014
    Publication date: October 2, 2014
    Inventors: Chi-Feng HUANG, Chia-Chung CHEN
  • Publication number: 20140291806
    Abstract: Semiconductor devices having capacitor arrays. A semiconductor device is formed including a capacitor array formed in a plurality of cells in a two-dimensional grid. The capacitor array includes a plurality of operational capacitors formed in a first subset of the plurality of cells along a diagonal of the capacitor array. A first operational capacitor is formed in a cell at a first edge of the capacitor array and at a first edge of the diagonal of the capacitor array. The capacitor array also includes a plurality of dummy patterns formed about the plurality of operational capacitors in the capacitor array in a second subset of the plurality of cells to achieve symmetry in the grid about the diagonal. Each one of the plurality of operational capacitors is electrically coupled to another one of the plurality of operational capacitors.
    Type: Application
    Filed: June 12, 2014
    Publication date: October 2, 2014
    Inventors: Chi-Feng HUANG, Chia-Chung CHEN
  • Publication number: 20140264635
    Abstract: A device includes a semiconductor substrate of a first conductivity type, and a deep well region in the semiconductor substrate, wherein the deep well region is of a second conductivity type opposite to the first conductivity type. The device further includes a well region of the first conductivity type over the deep well region. The semiconductor substrate has a top portion overlying the well region, and a bottom portion underlying the deep well region, wherein the top portion and the bottom portion are of the first conductivity type, and have a high resistivity. A gate dielectric is over the semiconductor substrate. A gate electrode is over the gate dielectric. A source region and a drain region extend into the top portion of the semiconductor substrate. The source region, the drain region, the gate dielectric, and the gate electrode form a Radio Frequency (RF) switch.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chung Chen, Chi-Feng Huang, Shu Fang Fu, Tzu-Jin Yeh, Chewn-Pu Jou
  • Publication number: 20140239364
    Abstract: Apparatus and methods for a MOS varactor structure are disclosed. An apparatus is provided, comprising an active area defined in a portion of a semiconductor substrate; a doped well region in the active area extending into the semiconductor substrate; at least two gate structures disposed in parallel over the doped well region; source and drain regions disposed in the well region formed on opposing sides of the gate structures; a gate connector formed in a first metal layer overlying the at least two gate structures and electrically coupling the at least two gate structures; source and drain connectors formed in a second metal layer and electrically coupled to the source and drain regions; and interlevel dielectric material separating the source and drain connectors in the second metal layer from the gate connector formed in the first metal layer. Methods for forming the structure are disclosed.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 28, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Feng Huang, Chia-Chung Chen
  • Publication number: 20140183660
    Abstract: A power cell includes a fin over a substrate, the fin extending in a direction substantially perpendicular to a bottom surface of the substrate. The fin includes a first dopant type. The power cell further includes at least one isolation region over the substrate between the fin and an adjacent fin. The power cell further includes a gate structure in contact with the fin and the at least one isolation region, wherein the gate structure comprises a doped region in the fin, wherein the doped region has a second dopant type different from the first dopant type and the doped region defines a channel region in the fin.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Inventors: Chewn-Pu JOU, Tzu-Jin YEH, Chia-Chung CHEN