Patents by Inventor Chia-Shiung Tsai

Chia-Shiung Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10134945
    Abstract: A method for wafer to wafer bonding for III-V and CMOS wafers is provided. A silicon carrier wafer is provided having an epitaxial III-V semiconductor region and an oxide region disposed over the wafer top surface, the regions having substantially equal heights. A sidewall of the epitaxial III-V semiconductor region directly contacts a sidewall of the oxide region. A eutectic bonding layer is formed over a top surface of the epitaxial III-V semiconductor region and the oxide region for bonding to the CMOS wafer which contains semiconductor devices. The silicon carrier wafer is removed, and the CMOS wafer is singulated to form a plurality of three-dimensional integrated circuits, each including a CMOS substrate corresponding to a portion of the CMOS wafer and a III-V optical device corresponding to a portion of the III-V epitaxial semiconductor region.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: November 20, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming Chyi Liu, Chen-Hua Yu, Chia-Shiung Tsai, Alexander Kalnitsky, Ru-Liang Lee, Eugene Chen
  • Patent number: 10128113
    Abstract: A semiconductor structure comprises a substrate comprising an interlayer dielectric (ILD) and a silicon layer disposed over the ILD, wherein the ILD comprises a conductive structure disposed therein, a dielectric layer disposed over the silicon layer, and a conductive plug electrically connected with the conductive structure and extended from the dielectric layer through the silicon layer to the ILD, wherein the conductive plug has a length running from the dielectric layer to the ILD and a width substantially consistent along the length.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: November 13, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Shih-Pei Chou, Chen-Fa Lu, Jiech-Fun Lu, Yeur-Luen Tu, Chia-Shiung Tsai
  • Patent number: 10119909
    Abstract: A biological sensing structure includes a mesa integrally connected a portion of a substrate, wherein the mesa has a top surface and a sidewall surface adjacent to the top surface. The biological sensing structure includes a first light reflecting layer over the top surface and the sidewall surface of the mesa. The biological sensing structure includes a filling material surrounding the mesa, wherein the mesa protrudes from the filling material. The biological sensing structure includes a stop layer over the filling material and a portion of the first light reflecting layer. The biological sensing structure includes a second light reflecting layer over a portion of the stop layer and a portion of the top surface of the mesa. The biological sensing structure includes an opening in the second light reflecting layer to partially expose the top surface of the mesa.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: November 6, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Hua Lin, Li-Cheng Chu, Ming-Tung Wu, Yuan-Chih Hsieh, Lan-Lin Chao, Chia-Shiung Tsai
  • Publication number: 20180315760
    Abstract: A semiconductor arrangement includes a logic region and a memory region. The memory region has an active region that includes a semiconductor device. The memory region also has a capacitor within one or more dielectric layers over the active region, where the capacitor is over the semiconductor device. The semiconductor arrangement also includes a protective ring within at least one of the logic region or the memory region and that separates the logic region from the memory region. The capacitor has a first electrode, a second electrode and an insulating layer between the first electrode and the second electrode, where the first electrode is substantially larger than other portions of the capacitor.
    Type: Application
    Filed: June 21, 2018
    Publication date: November 1, 2018
    Inventors: Chern-Yow HSU, Chen-Jong Wang, Chia-Shiung Tsai, Shih-Chang Liu, Xiaomeng Chen
  • Publication number: 20180308901
    Abstract: Embodiments of forming an image sensor with organic photodiodes are provided. Trenches are formed in the organic photodiodes to increase the PN junction interfacial area, which improves the quantum efficiency (QE) of the photodiodes. The organic P-type material is applied in liquid form to fill the trenches. A mixture of P-type materials with different work function values and thickness can be used to meet the desired work function value for the photodiodes.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Inventors: Chin-Wei Liang, Chia-Shiung Tsai, Cheng-Yuan Tsai, Hsing-Lien Lin
  • Publication number: 20180309055
    Abstract: The present disclosure relates to a resistive random access memory (RRAM) device architecture, that includes a thin single layer of a conductive etch-stop layer between a lower metal interconnect and a bottom electrode of an RRAM cell. The conductive etch-stop layer provides simplicity in structure and the etch-selectivity of this layer provides protection to the underlying layers. The conductive etch stop layer can be etched using a dry or wet etch to land on the lower metal interconnect. In instances where the lower metal interconnect is copper, etching the conductive etch stop layer to expose the copper does not produce as much non-volatile copper etching by-products as in traditional methods. Compared to traditional methods, some embodiments of the disclosed techniques reduce the number of mask step and also reduce chemical mechanical polishing during the formation of the bottom electrode.
    Type: Application
    Filed: June 15, 2018
    Publication date: October 25, 2018
    Inventors: Ming Chyi Liu, Yuan-Tai Tseng, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 10109756
    Abstract: A photo-sensitive device includes a uniform layer, a gradated buffer layer over the uniform layer, a silicon layer over the gradated buffer layer, a photo-sensitive light-sensing region in the uniform layer and the silicon layer, a device layer on the silicon layer, and a carrier wafer bonded to the device layer.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: October 23, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Hung Cheng, Chia-Shiung Tsai, Cheng-Ta Wu, Xiaomeng Chen, Yen-Chang Chu, Yeur-Luen Tu
  • Patent number: 10103122
    Abstract: Hybrid bonding systems and methods for semiconductor wafers are disclosed. In one embodiment, a hybrid bonding system for semiconductor wafers includes a chamber and a plurality of sub-chambers disposed within the chamber. A robotics handler is disposed within the chamber that is adapted to move a plurality of semiconductor wafers within the chamber between the plurality of sub-chambers. The plurality of sub-chambers includes a first sub-chamber adapted to remove a protection layer from the plurality of semiconductor wafers, and a second sub-chamber adapted to activate top surfaces of the plurality of semiconductor wafers prior to hybrid bonding the plurality of semiconductor wafers together. The plurality of sub-chambers also includes a third sub-chamber adapted to align the plurality of semiconductor wafers and hybrid bond the plurality of semiconductor wafers together.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: October 16, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Ping-Yin Liu, Shih-Wei Lin, Xin-Hua Huang, Lan-Lin Chao, Chia-Shiung Tsai
  • Patent number: 10090196
    Abstract: An integrated circuit structure includes a package component, which further includes a non-porous dielectric layer having a first porosity, and a porous dielectric layer over and contacting the non-porous dielectric layer, wherein the porous dielectric layer has a second porosity higher than the first porosity. A bond pad penetrates through the non-porous dielectric layer and the porous dielectric layer. A dielectric barrier layer is overlying, and in contact with, the porous dielectric layer. The bond pad is exposed through the dielectric barrier layer. The dielectric barrier layer has a planar top surface. The bond pad has a planar top surface higher than a bottom surface of the dielectric barrier layer.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: October 2, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsun-Chung Kuang, Yen-Chang Chu, Cheng-Tai Hsiao, Ping-Yin Liu, Lan-Lin Chao, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 10079257
    Abstract: A method of forming an image sensor device includes forming a light sensing region at a front surface of a silicon substrate and a patterned metal layer there over. Thereafter, the method includes depositing a metal oxide anti-reflection laminate on the first surface of the substrate. The metal oxide anti-reflection laminate includes one or more composite layers of thin metal oxides stacked over the photodiode. Each composite layer includes two or more metal oxide layers: one metal oxide is a high energy band gap metal oxide and another metal oxide is a high refractive index metal oxide.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: September 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsing-Lien Lin, Yeur-Luen Tu, Cheng-Yuan Tsai, Cheng-Ta Wu, Chia-Shiung Tsai
  • Patent number: 10079296
    Abstract: A semiconductor device includes an indium gallium nitride layer over an active layer. The semiconductor device further includes an annealed region beneath the indium gallium nitride layer, the annealed region comprising indium atoms driven from the indium gallium nitride layer into the active layer.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: September 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Hao Chiang, Po-Chun Liu, Chi-Ming Chen, Min-Chang Ching, Chung-Yi Yu, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 10074537
    Abstract: A method of forming a semiconductor structure includes depositing a first III-V layer over a substrate. The method includes depositing a first III-V compound layer over the first III-V layer. Depositing the first III-V compound layer includes depositing a lower III-V compound layer. Depositing the first III-V compound layer includes depositing an upper III-V compound layer over the lower III-V compound layer, wherein the first III-V layer has a doping concentration greater than that of the upper III-V compound layer. The method includes repeating depositing III-V compound layers until a number of III-V compound layers is equal to a predetermined number of III-V compound layers. The method includes forming a second III-V compound layer an upper most III-V compound layer, wherein the second III-V compound layer is undoped or doped. The method includes forming an active layer over the second III-V compound layer.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: September 11, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 10049890
    Abstract: The present disclosure provides a semiconductor structure, comprising a substrate, dielectric layers and conductive layers. A first dielectric layer is disposed on a bottom surface and sidewall surfaces of a filled trench of the substrate. A first conductive layer is disposed on the first dielectric layer and has a first surface in the filled trench and a second surface above the substrate. A second dielectric layer is disposed on the first conductive layer. A second conductive layer is disposed on the second dielectric layer and has a first surface in the filled trench and a second surface above the substrate. A third dielectric layer is disposed on the second conductive layer. A third conductive layer is disposed in the filled trench and on the third dielectric layer. A top surface of the third conductive layer is lower than the second surface of the second conductive layer.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: August 14, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chung-Yen Chou, Chih-Jen Chan, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20180226449
    Abstract: An interconnect apparatus and a method of forming the interconnect apparatus is provided. Two substrates, such as wafers, dies, or a wafer and a die, are bonded together. A first mask is used to form a first opening extending partially to an interconnect formed on the first wafer. A dielectric liner is formed, and then another etch process is performed using the same mask. The etch process continues to expose interconnects formed on the first substrate and the second substrate. The opening is filled with a conductive material to form a conductive plug.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 9, 2018
    Inventors: Shih Pei Chou, Hung-Wen Hsu, Ching-Chung Su, Chun-Han Tsao, Chia-Chieh Lin, Shu-Ting Tsai, Jiech-Fun Lu, Shih-Chang Liu, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20180226337
    Abstract: A method of fabricating a semiconductor device includes providing a first substrate comprising a first conductive element exposed at a surface of the first substrate; forming a patterned photoresist layer atop the first conductive element, whereby the patterned photoresist layer provides openings exposing the first conductive element; forming a first metal layer in the openings and directly atop the first conductive element; forming a first insulator layer over the first metal layer and the first substrate; and polishing the first metal layer and the first insulator layer, resulting in a first interface surface over the first substrate wherein the first interface surface includes part of the first metal layer and the first insulator layer.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 9, 2018
    Inventors: Ping-Yin Liu, Kai-Wen Cheng, Xin-Hua Huang, Lan-Lin Chao, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20180197856
    Abstract: A semiconductor structure with a MISFET and a HEMT region includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A third III-V compound layer is disposed on the second III-V compound layer is different from the second III-V compound layer in composition. A source feature and a drain feature are disposed in each of the MISFET and HEMT regions on the third III-V compound layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. A gate dielectric layer is disposed under the gate electrode in the MISFET region but above the top surface of the third III-V compound layer.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Inventors: Chung-Yen Chou, Sheng-De Liu, Fu-Chih Yang, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 10012899
    Abstract: A method includes depositing a first material layer over a first substrate; and depositing a graphene layer over the first material layer. The method further includes depositing an amorphous silicon layer over the graphene layer and bonding the amorphous silicon layer to a second substrate, thereby forming an assembly. The method further includes annealing the assembly, thereby converting the amorphous silicon layer to a silicon oxide layer. The method further includes removing the first substrate from the assembly and removing the first material layer from the assembly, thereby exposing the graphene layer.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: July 3, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chiang Tu, Chun-Lang Chen, Chue San Yoo, Jong-Yuh Chang, Chia-Shiung Tsai, Ping-Yin Liu, Hsin-Chang Lee, Chih-Cheng Lin, Yun-Yue Lin
  • Patent number: 10008531
    Abstract: An integrated circuit device incorporating a plurality of isolation trench structures configured for disparate applications and a method of forming the integrated circuit are disclosed. In an exemplary embodiment, a substrate having a first region and a second region is received. A first isolation trench is formed in the first region, and a second isolation trench is formed in the second region. A first liner layer is formed in the first isolation trench, and a second liner layer is formed in the second isolation trench. The second liner layer has a physical characteristic that is different from a corresponding physical characteristic of the first liner layer. An implantation procedure is performed on the second isolation trench and the second liner layer formed therein. The physical characteristic of the second liner layer may be selected to enhance an implantation depth or an implantation uniformity compared to the first liner layer.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: June 26, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Hsien Chou, Chia-Shiung Tsai, Feng-Chi Hung, Jiech-Fun Lu, Min-Feng Kao, Shih Pei Chou, Yeur-Luen Tu
  • Patent number: 10008506
    Abstract: A semiconductor arrangement includes a logic region and a memory region. The memory region has an active region that includes a semiconductor device. The memory region also has a capacitor within one or more dielectric layers over the active region, where the capacitor is over the semiconductor device. The semiconductor arrangement also includes a protective ring within at least one of the logic region or the memory region and that separates the logic region from the memory region. The capacitor has a first electrode, a second electrode and an insulating layer between the first electrode and the second electrode, where the first electrode is substantially larger than other portions of the capacitor.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: June 26, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Chern-Yow Hsu, Chen-Jong Wang, Chia-Shiung Tsai, Shih-Chang Liu, Xiaomeng Chen
  • Patent number: 10008546
    Abstract: Embodiments of forming an image sensor with organic photodiodes are provided. Trenches are formed in the organic photodiodes to increase the PN-junction interfacial area, which improves the quantum efficiency (QE) of the photodiodes. The organic P-type material is applied in liquid form to fill the trenches. A mixture of P-type materials with different work function values and thickness can be used to meet the desired work function value for the photodiodes.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: June 26, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Wei Liang, Chia-Shiung Tsai, Cheng-Yuan Tsai, Hsing-Lien Lin