Patents by Inventor Chia-Shiung Tsai

Chia-Shiung Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200118977
    Abstract: A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20200111881
    Abstract: The present disclosure, in some embodiments, relates to a method of forming a memory cell. The method may be performed by forming a sacrificial spacer over a substrate and forming a select gate along a side of the sacrificial spacer. An inter-gate dielectric is formed over the select gate and the sacrificial spacer. A memory gate layer is formed over the inter-gate dielectric and the sacrificial spacer. The memory gate layer is laterally separated from the sacrificial spacer by the select gate. The memory gate layer is etched to define a memory gate having a topmost point below a top of the sacrificial spacer.
    Type: Application
    Filed: December 6, 2019
    Publication date: April 9, 2020
    Inventors: Chang-Ming Wu, Wei Cheng Wu, Shih-Chang Liu, Harry-Hak-Lay Chuang, Chia-Shiung Tsai
  • Patent number: 10614948
    Abstract: A method for forming an inductor structure is provided. The method includes forming a first metal layer over a substrate and forming an oxide layer over the first metal layer. The method also includes forming a magnetic material in and over the oxide layer, and the magnetic material includes a first portion and a second portion, the first portion is directly over the oxide layer, and the second portion is in the oxide layer. The method further includes removing the first portion and a portion of the second portion of the magnetic material to form a magnetic layer, such that a recession is between the magnetic layer and the oxide layer. The method further includes forming a dielectric layer over the magnetic layer, wherein the recession is filled with the dielectric layer.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: April 7, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Yuan-Tai Tseng, Ming-Chyi Liu, Chung-Yen Chou, Chia-Shiung Tsai
  • Publication number: 20200105548
    Abstract: An apparatus for and a method of bonding a first substrate and a second substrate are provided. In an embodiment a first wafer chuck has a first curved surface and a second wafer chuck has a second curved surface. A first wafer is placed on the first wafer chuck and a second wafer is placed on a second wafer chuck, such that both the first wafer and the second wafer are pre-warped prior to bonding. Once the first wafer and the second wafer have been pre-warped, the first wafer and the second wafer are bonded together.
    Type: Application
    Filed: November 19, 2019
    Publication date: April 2, 2020
    Inventors: Chih-Hui Huang, Chun-Han Tsao, Sheng-Chau Chen, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20200083441
    Abstract: An integrated circuit device includes a substrate and a magnetic tunneling junction (MTJ). The MTJ includes at least a pinned layer, a barrier layer, and a free layer. The MTJ is formed over a surface of the substrate. Of the pinned layer, the barrier layer, and the free layer, the free layer is formed first and is closest to the surface. This enables a spacer to be formed over a perimeter region of the free layer prior to etching the free layer. Any damage to the free layer that results from etching or other free layer edge-defining process is kept at a distance from the tunneling junction by the spacer.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Inventors: Wei-Hang Huang, Fu-Ting Sung, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20200083362
    Abstract: A semiconductor device includes a substrate. The semiconductor device includes an AlN seed layer in direct contact with the substrate. The AlN seed layer includes an AlN first seed sublayer, and an AlN second seed sublayer, wherein a portion of the AlN seed layer closest to the substrate includes carbon dopants and has a different lattice structure from a substrate lattice structure. The semiconductor device includes a graded layer in direct contact with the AlN seed layer. The graded layer includes a first graded sublayer including AlGaN, a second graded sublayer including AlGaN, and a third graded sublayer including AlGaN. The semiconductor device includes a channel layer over the graded layer. The semiconductor device includes an active layer over the channel layer, wherein the active layer has a band gap discontinuity with the channel layer.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Inventors: Chi-Ming CHEN, Po-Chun LIU, Chung-Yi YU, Chia-Shiung TSAI, Ru-Liang LEE
  • Publication number: 20200075600
    Abstract: A semiconductor arrangement includes an active region including a semiconductor device. The semiconductor arrangement includes a capacitor. The capacitor includes a first electrode over at least one dielectric layer over the active region. The first electrode surrounds an open space within the capacitor. The first electrode has a non-linear first electrode sidewall.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Chern-Yow HSU, Chen-Jong WANG, Chia-Shiung TSAI, Ming Chyi LIU, Shih-Chang LIU, Xiaomeng CHEN
  • Publication number: 20200064730
    Abstract: A method for forming a pellicle apparatus involves forming a device substrate by depositing one or more pellicle layers defined over a base device layer, where a release layer is formed thereover. An adhesive layer is formed over a transparent carrier substrate. The adhesive layer is bonded to the release layer, defining a composite substrate comprised of the device and carrier substrates. The base device layer is removed from the composite structure and a pellicle frame is attached to an outermost one of the pellicle layers. A pellicle region is isolated from a remainder of the composite structure, and an ablation of the release layer is performed through the transparent carrier substrate, defining the pellicle apparatus comprising a pellicle film attached to the pellicle frame. The pellicle apparatus is then from a remaining portion of the composite substrate.
    Type: Application
    Filed: October 29, 2019
    Publication date: February 27, 2020
    Inventors: Ping-Yin Liu, Chang-Ming Wu, Chia-Shiung Tsai, Xin-Hua Huang
  • Publication number: 20200058746
    Abstract: Various embodiments of the present application are directed to a method for forming a thin semiconductor-on-insulator (SOI) substrate without implantation radiation and/or plasma damage. In some embodiments, a device layer is epitaxially formed on a sacrificial substrate and an insulator layer is formed on the device layer. The insulator layer may, for example, be formed with a net charge that is negative or neutral. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates. The sacrificial substrate is removed, and the device layer is cyclically thinned until the device layer has a target thickness. Each thinning cycle comprises oxidizing a portion of the device layer and removing oxide resulting from the oxidizing.
    Type: Application
    Filed: August 14, 2018
    Publication date: February 20, 2020
    Inventors: Cheng-Ta Wu, Chia-Shiung Tsai, Jiech-Fun Lu, Kuo-Hwa Tzeng, Shih-Pei Chou, Yu-Hung Cheng, Yeur-Luen Tu
  • Publication number: 20200052014
    Abstract: A device includes two BSI image sensor elements and a third element. The third element is bonded in between the two BSI image sensor elements using element level stacking methods. Each of the BSI image sensor elements includes a substrate and a metal stack disposed over a first side of the substrate. The substrate of the BSI image sensor element includes a photodiode region for accumulating an image charge in response to radiation incident upon a second side of the substrate. The third element also includes a substrate and a metal stack disposed over a first side of the substrate. The metal stacks of the two BSI image sensor elements and the third element are electrically coupled.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Inventors: Ping-Yin Liu, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen, Pin-Nan Tseng
  • Publication number: 20200052082
    Abstract: An exemplary method includes forming a common source region in a substrate, and forming an isolation feature over the common source region. The common source region is disposed between the substrate and the isolation feature. The common source region and the isolation feature span a plurality of active regions of the substrate. A gate, such as an erase gate, may be formed after forming the common source region. In some implementations, the common source region is formed by etching the substrate to form a saw-tooth shaped recess region (or a U-shaped recess region) and performing an ion implantation process to form a doped region in a portion of the saw-tooth shaped recess region (or the U-shaped recess region), such that the common source region has a sawtooth profile (or a U-shaped profile).
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
    Inventors: Ming Chyi Liu, Chang-Ming Wu, Shih-Chang Liu, Wei Cheng Wu, Harry-Hak-Lay Chuang, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 10553474
    Abstract: Various embodiments of the present application are directed towards a method for forming a semiconductor-on-insulator (SOI) substrate with a thick device layer and a thick insulator layer. In some embodiments, the method includes forming an insulator layer covering a handle substrate, and epitaxially forming a device layer on a sacrificial substrate. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates, and the sacrificial substrate is removed. The removal includes performing an etch into the sacrificial substrate until the device layer is reached. Because the device layer is formed by epitaxy and transferred to the handle substrate, the device layer may be formed with a large thickness. Further, because the epitaxy is not affected by the thickness of the insulator layer, the insulator layer may be formed with a large thickness.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: February 4, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ta Wu, Chia-Shiung Tsai, Jiech-Fun Lu, Kuan-Liang Liu, Shih-Pei Chou, Yu-Hung Cheng, Yeur-Luen Tu
  • Patent number: 10553785
    Abstract: This description relates to a method for fabricating a magnetoresistive random access memory (MRAM) device having a plurality of magnetic tunnel junction (MTJ) units. The method includes forming a bottom conductive layer, forming an anti-ferromagnetic layer and forming a tunnel layer over the bottom conductive layer and the anti-ferromagnetic layer. The method further includes forming a free magnetic layer, having a magnetic moment aligned in a direction that is adjustable by applying an electromagnetic field, over the tunnel layer and forming a top conductive layer over the free magnetic layer. The method further includes performing at least one lithographic process to remove portions of the bottom conductive layer, the anti-ferromagnetic layer, the tunnel layer, the free magnetic layer and the top conductive layer that is uncovered by the photoresist layer until the bottom conductive layer is exposed and removing portions of at least one sidewall of the MTJ unit.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: February 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20200028070
    Abstract: Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of magnetic random access memory (MRAM) cells with a minimum dimension below the lower resolution limit of some optical lithography techniques. A copolymer solution comprising first and second polymer species is spin-coated over a heterostructure which resides over a surface of a substrate. The heterostructure comprises first and second ferromagnetic layers which are separated by an insulating layer. The copolymer solution is subjected to self-assembly into a phase-separated material comprising a pattern of micro-domains of the second polymer species within a polymer matrix comprising the first polymer species. The first polymer species is then removed, leaving a pattern of micro-domains of the second polymer species. A pattern of magnetic memory cells within the heterostructure is formed by etching through the heterostructure while utilizing the pattern of micro-domains as a hardmask.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Inventors: Chih-Ming Chen, Chern-Yow Hsu, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20200020856
    Abstract: The present disclosure relates to a resistive random access memory (RRAM) device architecture, that includes a thin single layer of a conductive etch-stop layer between a lower metal interconnect and a bottom electrode of an RRAM cell. The conductive etch-stop layer provides simplicity in structure and the etch-selectivity of this layer provides protection to the underlying layers. The conductive etch stop layer can be etched using a dry or wet etch to land on the lower metal interconnect. In instances where the lower metal interconnect is copper, etching the conductive etch stop layer to expose the copper does not produce as much non-volatile copper etching by-products as in traditional methods. Compared to traditional methods, some embodiments of the disclosed techniques reduce the number of mask step and also reduce chemical mechanical polishing during the formation of the bottom electrode.
    Type: Application
    Filed: September 21, 2019
    Publication date: January 16, 2020
    Inventors: Ming Chyi Liu, Yuan-Tai Tseng, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20200013953
    Abstract: In some methods, a contact is formed over a substrate, and a bottom electrode layer is formed over the contact. A first dielectric layer is formed to cover a peripheral portion of the bottom electrode layer but not a central portion of the bottom electrode layer. A second dielectric layer is formed over the first dielectric layer. The second dielectric layer includes a central dielectric region that contacts the central portion of the bottom electrode layer, and a peripheral dielectric region over the peripheral portion of the bottom electrode. A step dielectric region connects the central and peripheral dielectric regions. A top electrode layer is formed over the second dielectric layer. The top electrode layer includes a central top electrode region, a peripheral top electrode region, and a step top electrode region directly above the central dielectric region, the peripheral dielectric region, and the step dielectric region, respectively.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 9, 2020
    Inventors: Ming Chyi Liu, Yuan-Tai Tseng, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 10529916
    Abstract: An integrated circuit device includes a substrate and a magnetic tunneling junction (MTJ). The MTJ includes at least a pinned layer, a barrier layer, and a free layer. The MTJ is formed over a surface of the substrate. Of the pinned layer, the barrier layer, and the free layer, the free layer is formed first and is closest to the surface. This enables a spacer to be formed over a perimeter region of the free layer prior to etching the free layer. Any damage to the free layer that results from etching or other free layer edge-defining process is kept at a distance from the tunneling junction by the spacer.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: January 7, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Hang Huang, Fu-Ting Sung, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20200006271
    Abstract: Various embodiments of the present application are directed towards a method for forming an integrated chip in which a group III-V device is bonded to a substrate, as well as the resulting integrated chip. In some embodiments, the method includes: forming a chip including an epitaxial stack, a metal structure on the epitaxial stack, and a diffusion layer between the metal structure and the epitaxial stack; bonding the chip to a substrate so the metal structure is between the substrate and the epitaxial stack; and performing an etch into the epitaxial stack to form a mesa structure with sidewalls spaced from sidewalls of the diffusion layer. The metal structure may, for example, be a metal bump patterned before the bonding or may, for example, be a metal layer that is on an etch stop layer and that protrudes through the etch stop layer to the diffusion layer.
    Type: Application
    Filed: July 2, 2018
    Publication date: January 2, 2020
    Inventors: Jhih-Bin Chen, Chia-Shiung Tsai, Ming Chyi Liu, Eugene Chen
  • Publication number: 20200006052
    Abstract: A method includes performing a plasma activation on a surface of a first package component, removing oxide regions from surfaces of metal pads of the first package component, and performing a pre-bonding to bond the first package component to a second package component.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 2, 2020
    Inventors: Xin-Hua Huang, Ping-Yin Liu, Hung-Hua Lin, Hsun-Chung Kuang, Yuan-Chih Hsieh, Lan-Lin Chao, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 10522532
    Abstract: A process for manufacturing an integrated circuit (IC) with a through via extending through a group III-V layer to a diode is provided. An etch is performed through the group III-V layer, into a semiconductor substrate underlying the group III-V layer, to form a via opening. A doped region is formed in the semiconductor substrate, through the via opening. Further, the doped region is formed with an opposite doping type as a surrounding region of the semiconductor substrate. The through via is formed in the via opening and in electrical communication with the doped region.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: December 31, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Yen Chou, Chia-Shiung Tsai, Shih-Chang Liu, Yung-Chang Chang