Patents by Inventor Chin Cheng Chien

Chin Cheng Chien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8551847
    Abstract: A method for forming a metal gate is provided. First, a dummy material is formed to completely cover a substrate. Second, a dopant is selectively implanted into the dummy material. Then, some of the dummy material is removed to expose part of the substrate and to form a dummy gate including a dopant region disposed between a first region and a second region. Later an interlayer dielectric layer is formed to surround the dummy gate. Next, a selective etching step is carried out to remove the first region to form a recess without substantially removing the dopant region. Afterwards, the recess is filled with a material set to form a metal gate.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: October 8, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chun-Yuan Wu, Chin-Cheng Chien, Chiu-Hsien Yeh, Yeng-Peng Wang
  • Patent number: 8551829
    Abstract: A method for manufacturing a multi-gate transistor device includes providing a semiconductor substrate having a first patterned semiconductor layer formed thereon, sequentially forming a gate dielectric layer and a gate layer covering a portion of the first patterned semiconductor layer on the semiconductor substrate, removing a portion of the first patterned semiconductor layer to form a second patterned semiconductor layer, and performing a selective epitaxial growth process to form an epitaxial layer on a surface of the second patterned semiconductor layer.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: October 8, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Teng-Chun Tsai
  • Patent number: 8552503
    Abstract: A strained silicon substrate structure includes a first transistor and a second transistor disposed on a substrate. The first transistor includes a first gate structure and two first source/drain regions disposed at two sides of the first gate structure. A first source/drain to gate distance is between each first source/drain region and the first gate structure. The second transistor includes a second gate structure and two source/drain doped regions disposed at two side of the second gate structure. A second source/drain to gate distance is between each second source/drain region and the second gate structure. The first source/drain to gate distance is smaller than the second source/drain to gate distance.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: October 8, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Guang-Yaw Hwang, Ling-Chun Chou, I-Chang Wang, Shin-Chuan Huang, Jiunn-Hsiung Liao, Shin-Chi Chen, Pau-Chung Lin, Chiu-Hsien Yeh, Chin-Cheng Chien, Chieh-Te Chen
  • Publication number: 20130256701
    Abstract: A strained silicon channel semiconductor structure comprises a substrate having an upper surface, a gate structure formed on the upper surface, at least one recess formed in the substrate at lateral sides of the gate structure, wherein the recess has at least one sidewall which has an upper sidewall and a lower sidewall concaved in the direction to the gate structure, and the included angle between the upper sidewall and horizontal plane ranges between 54.5°-90°, and an epitaxial layer filled into the two recesses.
    Type: Application
    Filed: May 30, 2013
    Publication date: October 3, 2013
    Inventors: Chan-Lon Yang, Ted Ming-Lang Guo, Chin-I Liao, Chin-Cheng Chien, Shu-Yen Chan, Chun-Yuan Wu
  • Patent number: 8536038
    Abstract: A manufacturing method for a metal gate includes providing a substrate having at least a semiconductor device with a conductivity type formed thereon, forming a gate trench in the semiconductor device, forming a work function metal layer having the conductivity type and an intrinsic work function corresponding to the conductivity type in the gate trench, and performing an ion implantation to adjust the intrinsic work function of the work function metal layer to a target work function.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: September 17, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Shao-Wei Wang, Yu-Ren Wang, Chien-Liang Lin, Wen-Yi Teng, Tsuo-Wen Lu, Chih-Chung Chen, Ying-Wei Yen, Yu-Min Lin, Chin-Cheng Chien, Jei-Ming Chen, Chun-Wei Hsu, Chia-Lung Chang, Yi-Ching Wu, Shu-Yen Chan
  • Publication number: 20130228836
    Abstract: A non-planar semiconductor structure includes a substrate, at least two fin-shaped structures, at least an isolation structure, and a plurality of epitaxial layers. The fin-shaped structures are located on the substrate. The isolation structure is located between the fin-shaped structures, and the isolation structure has a nitrogen-containing layer. The epitaxial layers respectively cover a part of the fin-shaped structures and are located on the nitrogen-containing layer. Anon-planar semiconductor process is also provided for forming the semiconductor structure.
    Type: Application
    Filed: April 24, 2013
    Publication date: September 5, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Hung Tsai, Chien-Ting Lin, Chin-Cheng Chien, Chin-Fu Lin, Chih-Chien Liu, Teng-Chun Tsai, Chun-Yuan Wu
  • Patent number: 8519390
    Abstract: A test pattern for measuring semiconductor alloys using X-ray diffraction (XRD) includes a first region to an Nth region defined on a wafer, and a plurality of test structures positioned in the first region and so forth up to in the Nth region. The test structures in the same region have sizes identical to each other and the test structures in different regions have sizes different from each other.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: August 27, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chin-I Liao, Teng-Chun Hsuan, I-Ming Lai, Chin-Cheng Chien
  • Publication number: 20130207122
    Abstract: A method for fabricating FinFETs is described. A semiconductor substrate is patterned to form odd fins. Spacers are formed on the substrate and on the sidewalls of the odd fins, wherein each spacer has a substantially vertical sidewall. Even fins are then formed on the substrate between the spacers. A semiconductor structure for forming FinFETs is also described, which is fabricated using the above method.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 15, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Fu Lin, Chin-Cheng Chien, Chun-Yuan Wu, Teng-Chun Tsai, Chih-Chien Liu
  • Patent number: 8502288
    Abstract: A semiconductor structure including a substrate and a gate structure disposed on the substrate is disclosed. The gate structure includes a gate dielectric layer disposed on the substrate, a gate material layer disposed on the gate dielectric layer and an outer spacer with a rectangular cross section. The top surface of the outer spacer is lower than the top surface of the gate material layer.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: August 6, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Ted Ming-Lang Guo, Chin-Cheng Chien, Shu-Yen Chan, Ling-Chun Chou, Tsung-Hung Chang, Chun-Yuan Wu
  • Publication number: 20130193585
    Abstract: A method of fabricating a through silicon via (TSV) structure, in which, a patterned mask is formed on a substrate, the patterned mask has an opening, a spacer-shaped structure is formed on a sidewall of the opening, and a via hole having a relatively enlarged opening is formed by etching the spacer-shaped structure and the substrate through the opening after the spacer-shaped structure is formed. A TSV structure, in which, a via hole has an opening portion and a body portion, the opening portion is a relatively enlarged opening and has a tapered shape having an opening size of an upper portion greater than an opening size of a lower portion.
    Type: Application
    Filed: February 1, 2012
    Publication date: August 1, 2013
    Inventors: Chin-Fu Lin, Chun-Yuan Wu, Chih-Chien Liu, Teng-Chun Tsai, Chin-Cheng Chien
  • Patent number: 8497198
    Abstract: A semiconductor process is described as follows. A plurality of dummy patterns is formed on a substrate. A mask material layer is conformally formed on the substrate, so as to cover the dummy patterns. The mask material layer has an etching rate different from that of the dummy patterns. A portion of the mask material layer is removed, so as to form a mask layer on respective sidewalls of each dummy pattern. An upper surface of the mask layer and an upper surface of each dummy pattern are substantially coplanar. The dummy patterns are removed. A portion of the substrate is removed using the mask layer as a mask, so as to form a plurality of fin structures and a plurality of trenches alternately arranged in the substrate. The mask layer is removed.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 30, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Teng-Chun Tsai
  • Patent number: 8481391
    Abstract: A process for manufacturing a stress-providing structure is applied to the fabrication of a semiconductor device. Firstly, a substrate with a channel structure is provided. A silicon nitride layer is formed over the substrate by chemical vapor deposition in a halogen-containing environment. An etching process is performed to partially remove the silicon nitride layer to expose a portion of a surface of the substrate beside the channel structure. The exposed surface of the substrate is etched to form a recess in the substrate. Then, the substrate is thermally treated at a temperature between 750° C. and 820° C. After the substrate is thermally treated, a stress-providing material is filled in the recess to form a stress-providing structure within the recess. The semiconductor device includes a substrate, a recess and a stress-providing structure. The recess has a round inner surface. The stress-providing structure has a round outer surface.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 9, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chin-I Liao, Ching-Hong Jiang, Ching-I Li, Shu-Yen Chan, Chin-Cheng Chien
  • Patent number: 8476164
    Abstract: A method of manufacturing semiconductor device is provided. A substrate at least with a patterned silicon-containing layer on the substrate and spacers adjacent to the patterned silicon-containing layer is provided. A metal layer is formed on the substrate and covers the patterned silicon-containing layer and spacers. Then, a capping layer is formed on the metal layer. A first rapid thermal process is performed to at least make a portion of the metal layer react with the substrate around the spacers to form transitional silicides. The capping layer and the unreacted portions of the metal layer are removed. A first nitride film with a first tensile stress S1 is formed on the substrate. A second rapid thermal process is performed to transfer the transitional silicide to a silicide and transfer the first nitride film to a second nitride film with a second tensile stress S2, wherein S2>S1.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: July 2, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chin-Fu Lin, Chin-Cheng Chien, Chih-Chien Liu, Chia-Lin Hsu, Chun-Yuan Wu
  • Patent number: 8476169
    Abstract: A method for fabricating a strained channel semiconductor structure includes providing a substrate, forming at least one gate structure on said substrate, performing an etching process to form two recesses in said substrate at opposites sides of said gate structure, the sidewall of said recess being concaved in the direction to said gate structure and forming an included angle with respect to horizontal plane, and performing a pre-bake process to modify the recess such that said included angle between the sidewall of said recess and the horizontal plane is increased.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: July 2, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chan-Lon Yang, Ted Ming-Lang Guo, Chin-I Liao, Chin-Cheng Chien, Shu-Yen Chan, Chun-Yuan Wu
  • Patent number: 8470714
    Abstract: A method of forming fin structure in integrated circuit comprising the steps of forming a plurality of fin structures on a substrate, covering an insulating layer on said substrate, performing a planarization process to expose mask layers, performing a wet etching process to etch said insulating layer, thereby exposing a part of the sidewall of said mask layer, removing said mask layer, and performing a dry etching process to remove pad layer and a part of said insulating layer, thereby exposing the top surface and a part of sidewall of said fin structures.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: June 25, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Shih-Hung Tsai, Ssu-I Fu, Chien-Liang Lin, Ying-Tsung Chen, Ted Ming-Lang Guo, Chin-Cheng Chien, Chien-Ting Lin, Wen-Tai Chiang
  • Publication number: 20130137243
    Abstract: First, a substrate with a recess is provided in a semiconductor process. Second, an embedded SiGe layer is formed in the substrate. The embedded SiGe layer includes an epitaxial SiGe material which fills up the recess. Then, a pre-amorphization implant (PAI) procedure is carried out on the embedded SiGe layer to form an amorphous region. Next, a source/drain implanting procedure is carried out on the embedded SiGe layer to form a source doping region and a drain doping region. Later, a source/drain annealing procedure is carried out to form a source and a drain in the substrate. At least one of the pre-amorphization implant procedure and the source/drain implanting procedure is carried out in a cryogenic procedure below ?30° C.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Inventors: Chan-Lon Yang, Ching-I Li, Ger-Pin Lin, I-Ming Lai, Yun-San Huang, Chin-I Liao, Chin-Cheng Chien
  • Publication number: 20130126949
    Abstract: A method for fabricating a metal oxide semiconductor (MOS) device is described, including following steps. Two recesses are formed in a substrate. A first epitaxy growth process is performed, so as to form a first semiconductor compound layer in each of the recesses. A second epitaxy growth process is performed with an epitaxial temperature lower than 700° C., so as to form a cap layer on each of the first semiconductor compound layers. Each of the cap layers includes a second semiconductor compound layer protruding from a surface of the substrate. The first and the second semiconductor compound layers are composed of a first Group IV element and a second Group IV element, wherein the second Group IV element is a nonsilicon element. The content of the second Group IV element in the second semiconductor compound layers is less than that in the first semiconductor compound layers.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-I Liao, I-Ming Lai, Chin-Cheng Chien
  • Patent number: 8445363
    Abstract: A method of fabricating an epitaxial layer includes providing a substrate. The substrate is etched to form at least a recess within the substrate. A surface treatment is performed on the recess to form a Si—OH containing surface. An in-situ epitaxial process is performed to form an epitaxial layer within the recess, wherein the epitaxial process is performed in a hydrogen-free atmosphere and at a temperature lower than 800° C.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: May 21, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Tsuo-Wen Lu, I-Ming Lai, Tsung-Yu Hou, Chien-Liang Lin, Wen-Yi Teng, Shao-Wei Wang, Yu-Ren Wang, Chin-Cheng Chien
  • Publication number: 20130122684
    Abstract: A semiconductor process for removing oxide layers comprises the steps of providing a substrate having an isolation structure and a pad oxide layer, performing a dry cleaning process and a wet cleaning process to remove said pad oxide layer, forming a sacrificial oxide layer on said substrate, and performing an ion implantation process to form doped well regions on both sides of the isolation structure.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 16, 2013
    Inventors: Teng-Chun Hsuan, Ted Ming-Lang Guo, Chin-Cheng Chien
  • Patent number: 8441072
    Abstract: A non-planar semiconductor structure includes a substrate, at least two fin-shaped structures, at least an isolation structure, and a plurality of epitaxial layers. The fin-shaped structures are located on the substrate. The isolation structure is located between the fin-shaped structures, and the isolation structure has a nitrogen-containing layer. The epitaxial layers respectively cover a part of the fin-shaped structures and are located on the nitrogen-containing layer. A non-planar semiconductor process is also provided for forming the semiconductor structure.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: May 14, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Shih-Hung Tsai, Chien-Ting Lin, Chin-Cheng Chien, Chin-Fu Lin, Chih-Chien Liu, Teng-Chun Tsai, Chun-Yuan Wu