Patents by Inventor Chin-Fu Lin

Chin-Fu Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140213034
    Abstract: A method for forming an isolation structure includes the following steps. A hard mask layer is formed on a substrate and a trench is formed in the substrate and the hard mask layer. A protective layer is formed to cover the trench and the hard mask layer. A first isolation material is filled into the trench. An etching process is performed to etch back part of the first isolation material.
    Type: Application
    Filed: January 29, 2013
    Publication date: July 31, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Lung Chang, Chih-Chien Liu, Jei-Ming Chen, Wen-Yi Teng, Jui-Min Lee, Keng-Jen Lin, Chin-Fu Lin
  • Patent number: 8779513
    Abstract: A non-planar semiconductor structure includes a substrate, at least two fin-shaped structures, at least an isolation structure, and a plurality of epitaxial layers. The fin-shaped structures are located on the substrate. The isolation structure is located between the fin-shaped structures, and the isolation structure has a nitrogen-containing layer. The epitaxial layers respectively cover a part of the fin-shaped structures and are located on the nitrogen-containing layer. A non-planar semiconductor process is also provided for forming the semiconductor structure.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: July 15, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Shih-Hung Tsai, Chien-Ting Lin, Chin-Cheng Chien, Chin-Fu Lin, Chih-Chien Liu, Teng-Chun Tsai, Chun-Yuan Wu
  • Patent number: 8735269
    Abstract: The method for forming a semiconductor structure includes first providing a substrate. Then, a TiN layer is formed on the substrate at a rate between 0.3 and 0.8 angstrom/second. Finally, a poly-silicon layer is formed directly on the TiN layer. Since the TiN in the barrier layer is formed at a low rate so as to obtain a good quality, the defects in the TiN layer or the defects on the above layer, such as gate dummy layer or gate cap layer, can be avoided.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: May 27, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chi-Yuan Sun, Chien-Hao Chen, Hsin-Fu Huang, Min-Chuan Tsai, Wei-Yu Chen, Chi-Mao Hsu, Tsun-Min Cheng, Chin-Fu Lin
  • Publication number: 20140117455
    Abstract: A multigate field effect transistor includes two fin-shaped structures and a dielectric layer. The fin-shaped structures are located on a substrate. The dielectric layer covers the substrate and the fin-shaped structures. At least two voids are located in the dielectric layer between the two fin-shaped structures. Moreover, the present invention also provides a multigate field effect transistor process for forming said multigate field effect transistor including the following steps. Two fin-shaped structures are formed on a substrate. A dielectric layer covers the substrate and the two fin-shaped structures, wherein at least two voids are formed in the dielectric layer between the two fin-shaped structures.
    Type: Application
    Filed: October 29, 2012
    Publication date: May 1, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Chien Liu, Chun-Yuan Wu, Chin-Fu Lin, Chin-Cheng Chien, Chia-Lin Hsu
  • Publication number: 20140106568
    Abstract: The present invention provides a method of forming an opening on a semiconductor substrate. First, a substrate is provided. Then a dielectric layer and a cap layer are formed on the substrate. A ratio of a thickness of the dielectric layer and a thickness of the cap layer is substantially between 15 and 1.5. Next, a patterned boron nitride layer is formed on the cap layer. Lastly, an etching process is performed by using the patterned hard mask as a mask to etch the cap layer and the dielectric layer so as to form an opening in the cap layer and the dielectric layer.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 17, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Po-Chun Chen
  • Publication number: 20140106557
    Abstract: A manufacturing method for semiconductor device having metal gate includes providing a substrate having a first semiconductor device and a second semiconductor device formed thereon, the first semiconductor device having a first gate trench and the second semiconductor device having a second gate trench; sequentially forming a high dielectric constant (high-k) gate dielectric layer and a multiple metal layer on the substrate; forming a first work function metal layer in the first gate trench; performing a first pull back step to remove a portion of the first work function metal layer from the first gate trench; forming a second work function metal layer in the first gate trench and the second gate trench; and performing a second pull back step to remove a portion of the second work function metal layer from the first gate trench and the second gate trench.
    Type: Application
    Filed: December 26, 2013
    Publication date: April 17, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ssu-I Fu, Wen-Tai Chiang, Ying-Tsung Chen, Shih-Hung Tsai, Chien-Ting Lin, Chi-Mao Hsu, Chin-Fu Lin
  • Publication number: 20140097507
    Abstract: The present invention provides a method of forming a semiconductor device having a metal gate. A substrate is provided and a gate dielectric and a work function metal layer are formed thereon, wherein the work function metal layer is on the gate dielectric layer. Then, a top barrier layer is formed on the work function metal layer. The step of forming the top barrier layer includes increasing a concentration of a boundary protection material in the top barrier layer. Lastly, a metal layer is formed on the top barrier layer. The present invention further provides a semiconductor device having a metal gate.
    Type: Application
    Filed: December 13, 2013
    Publication date: April 10, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chi-Mao Hsu, Hsin-Fu Huang, Chin-Fu Lin, Min-Chuan Tsai, Wei-Yu Chen, Chien-Hao Chen
  • Patent number: 8691681
    Abstract: The present invention provides a method of forming a semiconductor device having a metal gate. A substrate is provided and a gate dielectric and a work function metal layer are formed thereon, wherein the work function metal layer is on the gate dielectric layer. Then, a top barrier layer is formed on the work function metal layer. The step of forming the top barrier layer includes increasing a concentration of a boundary protection material in the top barrier layer. Lastly, a metal layer is formed on the top barrier layer. The present invention further provides a semiconductor device having a metal gate.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: April 8, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chi-Mao Hsu, Hsin-Fu Huang, Chin-Fu Lin, Min-Chuan Tsai, Wei-Yu Chen, Chien-Hao Chen
  • Publication number: 20140073109
    Abstract: A fabricating method of a shallow trench isolation structure includes the following steps. Firstly, a substrate is provided, wherein a high voltage device area is defined in the substrate. Then, a first etching process is performed to partially remove the substrate, thereby forming a preliminary shallow trench in the high voltage device area. Then, a second etching process is performed to further remove the substrate corresponding to the preliminary shallow trench, thereby forming a first shallow trench in the high voltage device area. Afterwards, a dielectric material is filled in the first shallow trench, thereby forming a first shallow trench isolation structure.
    Type: Application
    Filed: November 5, 2013
    Publication date: March 13, 2014
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Liang-An Huang, Yu-Chun Huang, Chin-Fu Lin, Yu-Ciao Lin, Yu-Chieh Lin, Hsin-Liang Liu, Chun-Hung Cheng, Yuan-Cheng Yang, Yau-Kae Sheu
  • Patent number: 8669618
    Abstract: A manufacturing method for semiconductor device having metal gate includes providing a substrate having a first semiconductor device and a second semiconductor device formed thereon, the first semiconductor device having a first gate trench and the second semiconductor device having a second gate trench; sequentially forming a high dielectric constant (high-k) gate dielectric layer and a multiple metal layer on the substrate; forming a first work function metal layer in the first gate trench; performing a first pull back step to remove a portion of the first work function metal layer from the first gate trench; forming a second work function metal layer in the first gate trench and the second gate trench; and performing a second pull back step to remove a portion of the second work function metal layer from the first gate trench and the second gate trench.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: March 11, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Ssu-I Fu, Wen-Tai Chiang, Ying-Tsung Chen, Shih-Hung Tsai, Chien-Ting Lin, Chi-Mao Hsu, Chin-Fu Lin
  • Publication number: 20140065775
    Abstract: A method of fabricating a semiconductor device includes the following steps. First, a semiconductor substrate is provided, which includes at least a fin structure and at least a gate semiconductor layer disposed thereon. The gate semiconductor layer covers a portion of the fin structure. Then a sacrificial layer is deposited to cover the fin structure entirely. Subsequently, a top surface of the fin structure is exposed from the sacrificial layer through an etching process. A material layer is then deposited, which covers the gate semiconductor layer, the fin structure and the sacrificial layer conformally. Finally, the material layer is etched until the top surface of the fin structure is exposed and a first spacer is concurrently formed on side surfaces of the gate semiconductor layer.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 6, 2014
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chin-Fu Lin, Chih-Chien Liu, Chia-Lin Hsu
  • Patent number: 8664055
    Abstract: A fin field-effect transistor structure includes a substrate, a fin channel and a high-k metal gate. The high-k metal gate is formed on the substrate and the fin channel. A process of manufacturing the fin field-effect transistor structure includes the following steps. Firstly, a polysilicon pseudo gate structure is formed on the substrate and a surface of the fin channel. By using the polysilicon pseudo gate structure as a mask, a source/drain region is formed in the fin channel. After the polysilicon pseudo gate structure is removed, a high-k dielectric layer and a metal gate layer are successively formed. Afterwards, a planarization process is performed on the substrate having the metal gate layer until the first dielectric layer is exposed, so that a high-k metal gate is produced.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: March 4, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Teng-Chun Tsai, Chun-Yuan Wu, Chin-Fu Lin, Chih-Chien Liu, Chin-Cheng Chien
  • Publication number: 20140054654
    Abstract: A MOS transistor includes a gate structure on a substrate, and the gate structure includes a wetting layer, a transitional layer and a low resistivity material from bottom to top, wherein the transitional layer has the properties of a work function layer, and the gate structure does not have any work function layers. Moreover, the present invention provides a MOS transistor process forming said MOS transistor.
    Type: Application
    Filed: August 22, 2012
    Publication date: February 27, 2014
    Inventors: Ya-Hsueh Hsieh, Chi-Mao Hsu, Hsin-Fu Huang, Min-Chuan Tsai, Chien-Hao Chen, Chi-Yuan Sun, Wei-Yu Chen, Chin-Fu Lin
  • Patent number: 8647941
    Abstract: A method of forming a semiconductor device includes the following steps. A semiconductor substrate having a first strained silicon layer is provided. Then, an insulating region such as a shallow trench isolation (STI) is formed, where a depth of the insulating region is substantially larger than a depth of the first strained silicon layer. Subsequently, the first strained silicon layer is removed, and a second strained silicon layer is formed to substitute the first strained silicon layer.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: February 11, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Teng-Chun Tsai
  • Patent number: 8647989
    Abstract: The present invention provides a method of forming an opening on a semiconductor substrate. First, a substrate is provided. Then a dielectric layer and a cap layer are formed on the substrate. A ratio of a thickness of the dielectric layer and a thickness of the cap layer is substantially between 15 and 1.5. Next, a patterned boron nitride layer is formed on the cap layer. Lastly, an etching process is performed by using the patterned hard mask as a mask to etch the cap layer and the dielectric layer so as to form an opening in the cap layer and the dielectric layer.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: February 11, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Po-Chun Chen
  • Publication number: 20130334690
    Abstract: A semiconductor structure includes a work function metal layer, a (work function) metal oxide layer and a main electrode. The work function metal layer is located on a substrate. The (work function) metal oxide layer is located on the work function metal layer. The main electrode is located on the (work function) metal oxide layer. Moreover a semiconductor process forming said semiconductor structure is also provided.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Inventors: Min-Chuan Tsai, Hsin-Fu Huang, Chi-Mao Hsu, Chin-Fu Lin, Chien-Hao Chen, Wei-Yu Chen, Chi-Yuan Sun, Ya-Hsueh Hsieh, Tsun-Min Cheng
  • Patent number: 8609529
    Abstract: A method of fabricating a through silicon via (TSV) structure, in which, a patterned mask is formed on a substrate, the patterned mask has an opening, a spacer-shaped structure is formed on a sidewall of the opening, and a via hole having a relatively enlarged opening is formed by etching the spacer-shaped structure and the substrate through the opening after the spacer-shaped structure is formed. A TSV structure, in which, a via hole has an opening portion and a body portion, the opening portion is a relatively enlarged opening and has a tapered shape having an opening size of an upper portion greater than an opening size of a lower portion.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: December 17, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chin-Fu Lin, Chun-Yuan Wu, Chih-Chien Liu, Teng-Chun Tsai, Chin-Cheng Chien
  • Publication number: 20130330919
    Abstract: A manufacturing process of an etch stop layer is provided. The manufacturing process includes steps of providing a substrate; forming a gate stack structure over the substrate, wherein the gate stack structure at least comprises a dummy polysilicon layer and a barrier layer; removing the dummy polysilicon layer to define a trench and expose a surface of the barrier layer; forming a repair layer on the surface of the barrier layer and an inner wall of the trench; and forming an etch stop layer on the repair layer. In addition, a manufacturing process of the gate stack structure with the etch stop layer further includes of forming an N-type work function metal layer on the etch stop layer within the trench, and forming a gate layer on the N-type work function metal layer within the trench.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 12, 2013
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Kun-Hsien LIN, Hsin-Fu Huang, Chi-Mao Hsu, Chin-Fu Lin, Chun-Yuan Wu
  • Publication number: 20130320537
    Abstract: A through silicon via structure is located in a recess of a substrate. The through silicon via structure includes a barrier layer, a buffer layer and a conductive layer. The barrier layer covers a surface of the recess. The buffer layer covers the barrier layer. The conductive layer is located on the buffer layer and fills the recess, wherein the contact surface between the conductive layer and the buffer layer is smoother than the contact surface between the buffer layer and the barrier layer. Moreover, a through silicon via process forming said through silicon via structure is also provided.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 5, 2013
    Inventors: Jia-Jia Chen, Chi-Mao Hsu, Tsun-Min Cheng, Chun-Ling Lin, Huei-Ru Tsai, Ching-Wei Hsu, Chin-Fu Lin, Hsin-Yu Chen
  • Publication number: 20130270612
    Abstract: The present invention provides a non-planar FET which includes a substrate, a fin structure, a gate and a gate dielectric layer. The fin structure is disposed on the substrate. The fin structure includes a first portion adjacent to the substrate wherein the first portion shrinks towards a side of the substrate. The gate is disposed on the fin structure. The gate dielectric layer is disposed between the fin structure and the gate. The present invention further provides a method of manufacturing the non-planar FET.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 17, 2013
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Chia-Lin Hsu