Patents by Inventor Chin-Fu Lin

Chin-Fu Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130214336
    Abstract: A method for filling a trench with a metal layer is disclosed. A deposition apparatus having a plurality of supporting pins is provided. A substrate and a dielectric layer disposed thereon are provided. The dielectric layer has a trench. A first deposition process is performed immediately after the substrate is placed on the supporting pins to form a metal layer in the trench, wherein during the first deposition process a temperature of the substrate is gradually increased to reach a predetermined temperature. When the temperature of the substrate reaches the predetermined temperature, a second deposition process is performed to completely fill the trench with the metal layer.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 22, 2013
    Inventors: Chi-Mao Hsu, Hsin-Fu Huang, Min-Chuan Tsai, Chien-Hao Chen, Wei-Yu Chen, Chin-Fu Lin, Jing-Gang Li, Min-Hsien Chen, Jian-Hong Su
  • Publication number: 20130207122
    Abstract: A method for fabricating FinFETs is described. A semiconductor substrate is patterned to form odd fins. Spacers are formed on the substrate and on the sidewalls of the odd fins, wherein each spacer has a substantially vertical sidewall. Even fins are then formed on the substrate between the spacers. A semiconductor structure for forming FinFETs is also described, which is fabricated using the above method.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 15, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Fu Lin, Chin-Cheng Chien, Chun-Yuan Wu, Teng-Chun Tsai, Chih-Chien Liu
  • Publication number: 20130193585
    Abstract: A method of fabricating a through silicon via (TSV) structure, in which, a patterned mask is formed on a substrate, the patterned mask has an opening, a spacer-shaped structure is formed on a sidewall of the opening, and a via hole having a relatively enlarged opening is formed by etching the spacer-shaped structure and the substrate through the opening after the spacer-shaped structure is formed. A TSV structure, in which, a via hole has an opening portion and a body portion, the opening portion is a relatively enlarged opening and has a tapered shape having an opening size of an upper portion greater than an opening size of a lower portion.
    Type: Application
    Filed: February 1, 2012
    Publication date: August 1, 2013
    Inventors: Chin-Fu Lin, Chun-Yuan Wu, Chih-Chien Liu, Teng-Chun Tsai, Chin-Cheng Chien
  • Patent number: 8497198
    Abstract: A semiconductor process is described as follows. A plurality of dummy patterns is formed on a substrate. A mask material layer is conformally formed on the substrate, so as to cover the dummy patterns. The mask material layer has an etching rate different from that of the dummy patterns. A portion of the mask material layer is removed, so as to form a mask layer on respective sidewalls of each dummy pattern. An upper surface of the mask layer and an upper surface of each dummy pattern are substantially coplanar. The dummy patterns are removed. A portion of the substrate is removed using the mask layer as a mask, so as to form a plurality of fin structures and a plurality of trenches alternately arranged in the substrate. The mask layer is removed.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 30, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Teng-Chun Tsai
  • Publication number: 20130178063
    Abstract: A method of manufacturing semiconductor device having silicon through via is disclosed, and conductor can be fully filled in the silicon through via. First, a silicon substrate is provided. Then, the silicon substrate is etched to form a through silicon via (TSV), and the through silicon via extends down from a surface of the silicon substrate. Next, a barrier layer is formed on the silicon substrate and in the through silicon via. Then, a seed layer is formed on the barrier layer and in the through silicon via. Afterward, a wet treatment is performed on the seed layer over the silicon substrate and within the through silicon via. The through silicon via is then filled with a conductor.
    Type: Application
    Filed: January 11, 2012
    Publication date: July 11, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ling Lin, Chi-Mao Hsu, Tsun-Min Cheng, Jia-Jia Chen, Chin-Fu Lin
  • Patent number: 8481425
    Abstract: A method for fabricating through-silicon via structure is disclosed. The method includes the steps of: providing a semiconductor substrate; forming a through-silicon via in the semiconductor substrate; covering a liner in the through-silicon via; performing a baking process on the liner; forming a barrier layer on the liner; and forming a through-silicon via electrode in the through-silicon via.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: July 9, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Yen-Liang Lu, Chun-Ling Lin, Chi-Mao Hsu, Chin-Fu Lin, Chun-Hung Chen, Tsun-Min Cheng, Meng-Hong Tsai
  • Patent number: 8481343
    Abstract: A manufacturing method of a molded image sensor packaging structure with a predetermined focal length and the structure using the same are disclosed. The manufacturing method includes: providing a substrate; providing a sensor chip disposed on the substrate; providing a lens module set over the sensing area of the chip to form a semi-finished component; providing a mold that has an upper mold member with a buffer layer; disposing the semi-finished component into the mold to form a mold cavity therebetween; injecting a molding compound into the mold cavity; and after transfer molding the molding compound, opening the mold and performing a post mold cure process to cure the molding compound. The buffer layer can fill the air gap between the upper surface of the lens module and the upper mold member, thereby preventing the upper surface of the lens module from being polluted by the molding compound.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: July 9, 2013
    Assignee: Kingpak Technology Inc.
    Inventors: Chung-Hsien Hsin, Hsiu-Wen Tu, Chun-Hua Chuang, Ren-Long Kuo, Chin-Fu Lin, Young-Houng Shiao
  • Publication number: 20130168744
    Abstract: The present invention provides a method of forming a semiconductor device having a metal gate. A substrate is provided and a gate dielectric and a work function metal layer are formed thereon, wherein the work function metal layer is on the gate dielectric layer. Then, a top barrier layer is formed on the work function metal layer. The step of forming the top barrier layer includes increasing a concentration of a boundary protection material in the top barrier layer. Lastly, a metal layer is formed on the top barrier layer. The present invention further provides a semiconductor device having a metal gate.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 4, 2013
    Inventors: Chi-Mao Hsu, Hsin-Fu Huang, Chin-Fu Lin, Min-Chuan Tsai, Wei-Yu Chen, Chien-Hao Chen
  • Patent number: 8476164
    Abstract: A method of manufacturing semiconductor device is provided. A substrate at least with a patterned silicon-containing layer on the substrate and spacers adjacent to the patterned silicon-containing layer is provided. A metal layer is formed on the substrate and covers the patterned silicon-containing layer and spacers. Then, a capping layer is formed on the metal layer. A first rapid thermal process is performed to at least make a portion of the metal layer react with the substrate around the spacers to form transitional silicides. The capping layer and the unreacted portions of the metal layer are removed. A first nitride film with a first tensile stress S1 is formed on the substrate. A second rapid thermal process is performed to transfer the transitional silicide to a silicide and transfer the first nitride film to a second nitride film with a second tensile stress S2, wherein S2>S1.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: July 2, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chin-Fu Lin, Chin-Cheng Chien, Chih-Chien Liu, Chia-Lin Hsu, Chun-Yuan Wu
  • Publication number: 20130154012
    Abstract: A manufacturing method for semiconductor device having metal gate includes providing a substrate having a first semiconductor device and a second semiconductor device formed thereon, the first semiconductor device having a first gate trench and the second semiconductor device having a second gate trench; sequentially forming a high dielectric constant (high-k) gate dielectric layer and a multiple metal layer on the substrate; forming a first work function metal layer in the first gate trench; performing a first pull back step to remove a portion of the first work function metal layer from the first gate trench; forming a second work function metal layer in the first gate trench and the second gate trench; and performing a second pull back step to remove a portion of the second work function metal layer from the first gate trench and the second gate trench.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Inventors: Ssu-I Fu, Wen-Tai Chiang, Ying-Tsung Chen, Shih-Hung Tsai, Chien-Ting Lin, Chi-Mao Hsu, Chin-Fu Lin
  • Patent number: 8441072
    Abstract: A non-planar semiconductor structure includes a substrate, at least two fin-shaped structures, at least an isolation structure, and a plurality of epitaxial layers. The fin-shaped structures are located on the substrate. The isolation structure is located between the fin-shaped structures, and the isolation structure has a nitrogen-containing layer. The epitaxial layers respectively cover a part of the fin-shaped structures and are located on the nitrogen-containing layer. A non-planar semiconductor process is also provided for forming the semiconductor structure.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: May 14, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Shih-Hung Tsai, Chien-Ting Lin, Chin-Cheng Chien, Chin-Fu Lin, Chih-Chien Liu, Teng-Chun Tsai, Chun-Yuan Wu
  • Patent number: 8441086
    Abstract: An image sensor packaging structure with a predetermined focal length is provided. The image sensor packaging structure includes a substrate, a chip, an optical assembly, and an encapsulation compound. The chip has a sensitization area and is coupled to the substrate. Conductive contacts on the substrate are electrically connected with conductive contacts around the sensitization area. The optical assembly has the predetermined focal length and is disposed above the chip so as to form an air cavity between the optical assembly and the sensitization area of the chip. The encapsulation compound is formed on the substrate to surround the chip and the optical assembly. With the above stated structure, not only can the focus adjusting procedure be dispensed with, but also the image sensor packaging structure can be manufactured by a molding or dispensing process.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: May 14, 2013
    Assignee: Kingpak Technology Inc.
    Inventors: Hsiu-Wen Tu, Chung-Hsien Hsin, Chun-Hua Chuang, Ren-Long Kuo, Chin-Fu Lin, Young-Houng Shiao
  • Patent number: 8431473
    Abstract: A method for fabricating a semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a dielectric layer on the substrate, wherein the dielectric layer comprises metal interconnects therein; forming a top metal layer on the dielectric layer; and forming a passivation layer on the top metal layer through high-density plasma chemical vapor deposition (HDPCVD) process.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: April 30, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Shu-Hui Hu, Shih-Feng Su, Hui-Shen Shih, Chih-Chien Liu, Po-Chun Chen, Ya-Jyuan Hung, Bin-Siang Tsai, Chin-Fu Lin
  • Patent number: 8420544
    Abstract: A method for fabricating an interconnection structure includes the following steps. Firstly, a substrate having a first conductive layer thereon is provided. Next, an ultra low-k material layer is formed on the substrate. Next, a portion of the ultra low-k material layer is removed, so as to form an opening to expose the first conductive layer. Next, a dry-cleaning process is performed by using gas, so as to clean a surface of the first conductive layer exposed by the opening. The dry-cleaning process is performed at a temperature in a range from the room temperature to 100° C.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: April 16, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Hsin-Fu Huang, Chi-Mao Hsu, Tsun-Min Cheng, Chin-Fu Lin
  • Publication number: 20130078778
    Abstract: A semiconductor process is described as follows. A plurality of dummy patterns is formed on a substrate. A mask material layer is conformally formed on the substrate, so as to cover the dummy patterns. The mask material layer has an etching rate different from that of the dummy patterns. A portion of the mask material layer is removed, so as to form a mask layer on respective sidewalls of each dummy pattern. An upper surface of the mask layer and an upper surface of each dummy pattern are substantially coplanar. The dummy patterns are removed. A portion of the substrate is removed using the mask layer as a mask, so as to form a plurality of fin structures and a plurality of trenches alternately arranged in the substrate. The mask layer is removed.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Teng-Chun Tsai
  • Publication number: 20130078780
    Abstract: A semiconductor process includes the following steps. An interlayer is formed on a substrate. A first metallic oxide layer is formed on the interlayer. A reduction process is performed to reduce the first metallic oxide layer into a metal layer. A high temperature process is performed to transform the metal layer to a second metallic oxide layer.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Inventors: Chin-Fu Lin, Chih-Chien Liu, Teng-Chun Tsai, Chin-Cheng Chien, Chun-Yuan Wu
  • Publication number: 20130056827
    Abstract: A non-planar semiconductor structure includes a substrate, at least two fin-shaped structures, at least an isolation structure, and a plurality of epitaxial layers. The fin-shaped structures are located on the substrate. The isolation structure is located between the fin-shaped structures, and the isolation structure has a nitrogen-containing layer. The epitaxial layers respectively cover a part of the fin-shaped structures and are located on the nitrogen-containing layer. A non-planar semiconductor process is also provided for forming the semiconductor structure.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 7, 2013
    Inventors: Shih-Hung Tsai, Chien-Ting Lin, Chin-Cheng Chien, Chin-Fu Lin, Chih-Chien Liu, Teng-Chun Tsai, Chun-Yuan Wu
  • Patent number: 8390087
    Abstract: The present invention discloses an image sensor package structure with a large air cavity. The image sensor package structure includes a substrate, a chip, a cover and a package material. The chip is combined with the substrate. A plastic sheet of the cover is adhered to the chip and a transparent lid of the cover is combined with the plastic sheet to provide a covering over a sensitization area of the chip so as to form an air cavity. The package material is arranged on the substrate and encapsulated around the chip and the cover. The plastic sheet having a predetermined thickness can increase the distance between the transparent lid and the chip to enlarge the air cavity. Thus, the image-sensing effect of the image sensor package structure can be improved and the ghost image problem resulting from multi-refraction and multi-reflection of light can be minimized.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: March 5, 2013
    Assignee: Kingpak Technology Inc.
    Inventors: Hsiu-Wen Tu, Ren-Long Kuo, Young-Houng Shiao, Tsao-Pin Chen, Mon-Nam Ho, Chih-Cheng Hsu, Chin-Fu Lin, Chung-Hsien Hsin
  • Publication number: 20130043513
    Abstract: A fabricating method of a shallow trench isolation structure includes the following steps. Firstly, a substrate is provided, wherein a high voltage device area is defined in the substrate. Then, a first etching process is performed to partially remove the substrate, thereby forming a preliminary shallow trench in the high voltage device area. Then, a second etching process is performed to further remove the substrate corresponding to the preliminary shallow trench, thereby forming a first shallow trench in the high voltage device area. Afterwards, a dielectric material is filled in the first shallow trench, thereby forming a first shallow trench isolation structure.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Liang-An HUANG, Yu-Chun Huang, Chin-Fu Lin, Yu-Ciao Lin, Yu-Chieh Lin, Hsin-Liang Liu, Chun-Hung Cheng, Yuan-Cheng Yang, Yau-Kae Sheu
  • Publication number: 20130045595
    Abstract: The method for processing a metal layer including the following steps is illustrated. First, a semiconductor substrate is provided. Then, a metal layer is formed over the semiconductor substrate. Furthermore, a microwave energy is used to selectively heat the metal layer without affecting the underlying semiconductor substrate and other formed structures, in which the microwave energy has a predetermined frequency in accordance with a material of the metal layer, and the predetermined frequency ranges between 1 KHz to 1 MHz.
    Type: Application
    Filed: August 16, 2011
    Publication date: February 21, 2013
    Inventors: Tsun-Min Cheng, Chien-Chao Huang, Chin-Fu Lin, Chi-Mao Hsu, Yen-Liang Lu, Chun-Ling Lin