Patents by Inventor Chin Yu

Chin Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134410
    Abstract: The present disclosure discloses a memory access interface device. A clock generation circuit generates reference signals. A transmitter transmits an output command and address signal to a memory device according to the reference signals. A signal training circuit executes a training process in a training mode that includes steps outlined below. A training signal is generated such that the training signal is transmitted as the output command and address signal. The training signal and the data signal generated by the memory device are compared to generate a comparison result indicating whether the data signal matches the training signal. The comparison result is stored. The clock generation circuit is controlled to modify a phase of at least one of the reference signals to be one of a plurality of under-test phases to execute a new loop of the training process until all the under-test phases are trained.
    Type: Application
    Filed: October 24, 2022
    Publication date: April 25, 2024
    Inventors: FU-CHIN TSAI, GER-CHIH CHOU, CHUN-CHI YU, CHIH-WEI CHANG, MIN-HAN TSAI
  • Patent number: 11966162
    Abstract: A photoresist composition includes a photoactive compound and a polymer. The polymer has a polymer backbone including one or more groups selected from: The polymer backbone includes at least one group selected from B, C-1, or C-2, wherein ALG is an acid labile group, and X is a linking group.
    Type: Grant
    Filed: May 22, 2023
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yang Lin, Ching-Yu Chang, Chin-Hsiang Lin
  • Publication number: 20240126170
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist layer including a photoresist composition over a substrate. The photoresist layer is selectively exposed to actinic radiation, the selectively exposed photoresist layer is developed to form a pattern in the photoresist layer. The photoresist composition includes a polymer including monomer units with photocleaving promoters, wherein the photocleaving promoters are one or more selected from the group consisting of living free radical polymerization chain transfer agents, electron withdrawing groups, bulky two dimensional (2-D) or three dimensional (3-D) organic groups, N-(acyloxy)phthalimides, and electron stimulated radical generators.
    Type: Application
    Filed: May 22, 2023
    Publication date: April 18, 2024
    Inventors: Chun-Chih HO, Chin-Hsiang Lin, Ching-Yu Chang
  • Publication number: 20240130038
    Abstract: A transmission device for suppressing the glass-fiber effect includes a circuit board and a transmission line. The circuit board includes a plurality of glass fibers, so as to define a fiber pitch. The transmission line is disposed on the circuit board. The transmission line includes a plurality of non-parallel segments. Each of the non-parallel segments of the transmission line has an offset distance with respect to a reference line. The offset distance is longer than or equal to a half of the fiber pitch.
    Type: Application
    Filed: November 23, 2022
    Publication date: April 18, 2024
    Applicants: UNIMICRON TECHNOLOGY CORP., National Taiwan University
    Inventors: Chin-Hsun WANG, Ruey-Beei Wu, Ching-Sheng Chen, Chun-Jui Hung, Wei-Yu Liao, Chi-Min Chang
  • Publication number: 20240118618
    Abstract: A method of manufacturing a semiconductor device includes forming a first layer having an organic material over a substrate. A second layer is formed over the first layer, wherein the second layer includes a silicon-containing polymer having pendant acid groups or pendant photoacid generator groups. The forming a second layer includes: forming a layer of a composition including a silicon-based polymer and a material containing an acid group or photoacid generator group over the first layer, floating the material containing an acid group or photoacid generator group over the silicon-based polymer, and reacting the material containing an acid group or photoacid generator group with the silicon-based polymer to form an upper second layer including a silicon-based polymer having pendant acid groups or pendant photoacid generator groups overlying a lower second layer comprising the silicon-based polymer. A photosensitive layer is formed over the second layer, and the photosensitive layer is patterned.
    Type: Application
    Filed: April 12, 2023
    Publication date: April 11, 2024
    Inventors: Chun-Chih HO, Ching-Yu Chang, Chin-Hsiang Lin
  • Patent number: 11954779
    Abstract: An animation generation method for tracking a facial expression and a neural network training method thereof are provided. The animation generation method for tracking a facial expression includes: driving a first role model according to an expression parameter set to obtain a virtual expression image corresponding to the expression parameter set; applying a plurality of real facial images to the virtual expression image corresponding to the facial expression respectively to generate a plurality of real expression images; training a tracking neural network according to the expression parameter set and the real expression images; inputting a target facial image to the trained tracking neural network to obtain a predicted expression parameter set; and using the predicted expression parameter set to control a second role model.
    Type: Grant
    Filed: March 8, 2022
    Date of Patent: April 9, 2024
    Assignee: DIGITAL DOMAIN ENTERPRISES GROUP LIMITED
    Inventors: Chin-Yu Chien, Yu-Hsien Li, Yi-Chi Cheng
  • Publication number: 20240113032
    Abstract: Interconnect structure packages (e.g., through silicon vias (TSV) packages, through interlayer via (TIV) packages) may be pre-manufactured as opposed to forming TIVs directly on a carrier substrate during a manufacturing process for a semiconductor die package at backend packaging facility. The interconnect structure packages may be placed onto a carrier substrate during manufacturing of a semiconductor device package, and a semiconductor die package may be placed on the carrier substrate adjacent to the interconnect structure packages. A molding compound layer may be formed around and in between the interconnect structure packages and the semiconductor die package.
    Type: Application
    Filed: April 25, 2023
    Publication date: April 4, 2024
    Inventors: Kai-Fung CHANG, Chin-Wei LIANG, Sheng-Feng WENG, Ming-Yu YEN, Cheyu LIU, Hung-Chih CHEN, Yi-Yang LEI, Ching-Hua HSIEH
  • Patent number: 11944659
    Abstract: The invention provides a method for improving sarcopenia of a subject in need thereof by using Phellinus linteus, in which the method includes administering an effective dose of composition to the subject, and the composition includes Phellinus linteus (NITE BP-03321 and BCRC 930210) as an effective substance. By using the aforementioned composition including an extract of a fermented product of the Phellinus linteus and/or its derivative, diameters of myotubes, amounts of muscles and muscle muscular endurance can be maintained, thereby improving sarcopenia.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: April 2, 2024
    Assignee: GRAPE KING BIO LTD
    Inventors: Chin-Chu Chen, I-Chen Li, Tsung-Ju Li, Ting-Yu Lu, Yen-Po Chen
  • Publication number: 20240103375
    Abstract: A method of forming a patterned photoresist layer includes the following operations: (i) forming a patterned photoresist on a substrate; (ii) forming a molding layer covering the patterned photoresist; (iii) reflowing the patterned photoresist in the molding layer; and (iv) removing the molding layer from the reflowed patterned photoresist. In some embodiments, the molding layer has a glass transition temperature that is greater than or equal to the glass transition temperature of the patterned photoresist. In yet some embodiments, the molding layer has a glass transition temperature that is 3° C.-30° C. less than the glass transition temperature of the patterned photoresist.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 28, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chih HO, Ching-Yu CHANG, Chin-Hsiang LIN
  • Publication number: 20240099796
    Abstract: A flexible tube includes a first connecting portion and a second connecting section. The second connecting section and the first connecting section are integrally connected to each other. The first connecting section has a first end surface, and the second connecting section has a second end surface, wherein there is an acute angle between the first end surface and the second end surface.
    Type: Application
    Filed: November 23, 2022
    Publication date: March 28, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hao-Yan WU, Chin-Chi HSIAO, Chien-Yu WU, Shu HUANG
  • Patent number: 11943877
    Abstract: A circuit board structure includes a circuit substrate having opposing first and second sides, a redistribution structure disposed at the first side, and a dielectric structure disposed at the second side. The circuit substrate includes a first circuit layer disposed at the first side and a second circuit layer disposed at the second side. The redistribution structure is electrically coupled to the circuit substrate and includes a first leveling dielectric layer covering the first circuit layer, a first thin-film dielectric layer disposed on the first leveling dielectric layer and having a material different from the first leveling dielectric layer, and a first redistributive layer disposed on the first thin-film dielectric layer and penetrating through the first thin-film dielectric layer and the first leveling dielectric layer to be in contact with the first circuit layer. The dielectric structure includes a second leveling dielectric layer disposed below the second circuit layer.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: March 26, 2024
    Assignee: Unimicron Technology Corp.
    Inventors: Wen-Yu Lin, Kai-Ming Yang, Chen-Hao Lin, Pu-Ju Lin, Cheng-Ta Ko, Chin-Sheng Wang, Guang-Hwa Ma, Tzyy-Jang Tseng
  • Patent number: 11942398
    Abstract: A semiconductor device includes a substrate, at least one via, a liner layer and a conductive layer. The substrate includes an electronic circuitry. The at least one via passes through the substrate. The at least one via includes a plurality of concave portions on a sidewall thereof. The liner layer fills in the plurality of concave portions of the at least one via. The conductive layer is disposed on the sidewall of the at least one via, covers the liner layer, and extends onto a surface of the substrate. The thickness of the conductive layer on the sidewall of the at least one via is varied.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Li Yang, Wen-Hsiung Lu, Jhao-Yi Wang, Fu Wei Liu, Chin-Yu Ku
  • Patent number: 11939664
    Abstract: A semiconductor process system includes a process chamber. The process chamber includes a wafer support configured to support a wafer. The system includes a bell jar configured to be positioned over the wafer during a semiconductor process. The interior surface of the bell jar is coated with a rough coating. The rough coating can include zirconium.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Meng-Chun Hsieh, Tsung-Yu Tsai, Hsing-Yuan Huang, Chih-Chang Wu, Szu-Hua Wu, Chin-Szu Lee
  • Patent number: 11935757
    Abstract: A method of manufacturing a semiconductor device includes forming a first layer of a first planarizing material over a patterned surface of a substrate, forming a second layer of a second planarizing material over the first planarizing layer, crosslinking a portion of the first planarizing material and a portion of the second planarizing material, and removing a portion of the second planarizing material that is not crosslinked. In an embodiment, the method further includes forming a third layer of a third planarizing material over the second planarizing material after removing the portion of the second planarizing material that is not crosslinked. The third planarizing material can include a bottom anti-reflective coating or a spin-on carbon, and an acid or an acid generator. The first planarizing material can include a spin-on carbon, and an acid, a thermal acid generator or a photoacid generator.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: March 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Hao Chen, Wei-Han Lai, Ching-Yu Chang, Chin-Hsiang Lin
  • Publication number: 20240088030
    Abstract: Provided are semiconductor devices that include a first gate structure having a first end cap portion, a second gate structure having a second end cap portion coaxial with the first gate structure, a first dielectric region separating the first end cap portion and the second end cap portion, a first conductive element extending over the first gate structure, a second conductive element extending over the second gate structure, and a gate via electrically connecting the second gate structure and the second conductive element, with the first dielectric region having a first width and being positioned at least partially under the first conductive element and defines a spacing between the gate via and an end of the second end cap portion that exceeds a predetermined distance.
    Type: Application
    Filed: January 23, 2023
    Publication date: March 14, 2024
    Inventors: Chin-Liang CHEN, Chi-Yu LU, Ching-Wei TSAI, Chun-Yuan CHEN, Li-Chun TIEN
  • Patent number: 11929331
    Abstract: The present disclosure provides a routing structure. The routing structure includes a substrate having a boundary and a first conductive trace configured to be coupled to a first conductive pad disposed within the boundary of the substrate. The first conductive trace is inclined with respect to the boundary of the substrate.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: March 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chin-Shen Lin, Wan-Yu Lo, Meng-Xiang Lee, Hao-Tien Kan, Kuo-Nan Yang, Chung-Hsing Wang
  • Publication number: 20240079229
    Abstract: The present disclosure provides a method of manufacturing a semiconductor device. The method includes: forming a transistor region in a substrate; forming a gate dielectric layer over the transistor region; forming a diffusion-blocking layer over the gate dielectric layer; forming a first portion of a work function layer over the diffusion-blocking layer; forming a second portion of the work function layer over the first portion of the work function layer; forming a plurality of barrier elements on or under a top surface of the second portion of the work function layer; and forming a gate electrode over the work function layer, wherein the plurality of barrier elements block oxygen from diffusing into the work function layer during the formation of the gate electrode.
    Type: Application
    Filed: September 1, 2022
    Publication date: March 7, 2024
    Inventors: CHIA CHAN FAN, CHUNG-LIANG CHENG, CHIN-CHIA YEH, CHIEH CHIANG, CHENG YU PAI
  • Publication number: 20240072075
    Abstract: An electronic device including a substrate, a first electrode layer, a photodiode, an insulating layer, a second electrode layer, and a first transparent conductive layer is provided. The first electrode layer is disposed on the substrate. The photodiode is disposed on the first electrode layer and is electrically connected to the first electrode layer. The insulating layer is disposed on the photodiode. The second electrode layer is disposed on the insulating layer and is electrically connected to the photodiode. The first transparent conductive layer is disposed on the insulating layer and contacts the second electrode layer. A manufacturing method of an electronic device is also provided.
    Type: Application
    Filed: July 18, 2023
    Publication date: February 29, 2024
    Applicants: InnoCare Optoelectronics Corporation, Innolux Corporation
    Inventors: Chin-Chi Chen, Ting-Yu Chen, Yi-Ju Tseng, Ji-Zhen Lu
  • Publication number: 20240072078
    Abstract: An electronic device including a substrate, a gate line, a switch element, and a photodetector is provided. The gate line is disposed on the substrate. The switch element is disposed on the substrate and is electrically connected to the gate line. The photodetector is disposed on the substrate and electrically connected to the switch element. The photodetector includes a first semiconductor. In a cross-sectional view of the electronic device, a sidewall of the first semiconductor and the gate line are spaced from each other by a first distance. The first distance is greater than or equal to 2 micrometers and less than or equal to 6 micrometers.
    Type: Application
    Filed: July 10, 2023
    Publication date: February 29, 2024
    Applicant: InnoCare Optoelectronics Corporation
    Inventors: Ting-Yu Chen, Chin-Chi Chen
  • Patent number: D1018537
    Type: Grant
    Filed: November 7, 2023
    Date of Patent: March 19, 2024
    Assignee: HTC CORPORATION
    Inventors: Shu-Kuen Chang, Natalia Amijo, Ian James McGillivray, Chin-Wei Chou, Yi-Shen Wang, Chih-Sung Fang, Hung-Yu Chen