Patents by Inventor Chun Chang

Chun Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240088278
    Abstract: A semiconductor structure includes spaced apart first and second fins over a substrate, a separating wall over the substrate and having opposite first and second wall surfaces, multiple first channel features extending away from the first wall surface over the first fin such that the first channel features are spaced apart, multiple second channel features extending away from the second wall surface over the second fin such that the second channel features are spaced apart, two spaced apart first epitaxial structures on the first fin such that each first channel feature interconnects the first epitaxial structures, two spaced apart second epitaxial structures on the second fin such that each second channel feature interconnects the second epitaxial structures, and a dielectric structure including at least one bottom dielectric portion separating at least one of the first and second epitaxial structures from a corresponding first and second fins.
    Type: Application
    Filed: January 12, 2023
    Publication date: March 14, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun LIN, Chun-Sheng LIANG, Chun-Wing YEUNG, Chih-Hao CHANG
  • Publication number: 20240086612
    Abstract: An IC device includes first through third rows of fin field-effect transistors (FinFETs), wherein the second row is between and adjacent to each of the first and third rows, the FinFETs of the first row are one of an n-type or p-type, the FinFETs of the second and third rows are the other of the n-type or p-type, the FinFETs of the first and third rows include a first total number of fins, and the FinFETs of the second row include a second total number of fins one greater or fewer than the first total number of fins.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Inventors: Po-Hsiang HUANG, Fong-Yuan CHANG, Clement Hsingjen WANN, Chih-Hsin KO, Sheng-Hsiung CHEN, Li-Chun TIEN, Chia-Ming HSU
  • Publication number: 20240088149
    Abstract: A semiconductor structure includes: a substrate; a first fin and a second fin disposed on the substrate and spaced apart from each other; a dielectric wall disposed on the substrate and having first and second wall surfaces; a third fin disposed on the substrate to be in direct contact with at least one of the first and second fins; a first device disposed on the first fin and including first channel features extending away from the first wall surface; a second device disposed on the second fin and including second channel features extending away from the second wall surface; at least one third device disposed on the third fin and including third channel features; and an isolation feature disposed on the substrate to permit the third device to be electrically isolated from the first and second devices. A method for manufacturing the semiconductor structure is also disclosed.
    Type: Application
    Filed: February 15, 2023
    Publication date: March 14, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun LIN, Ming-Heng TSAI, Huang-Chao CHANG, Chun-Sheng LIANG, Chih-Hao CHANG, Jhon Jhy LIAW
  • Publication number: 20240088307
    Abstract: A semiconductor package is provided. The semiconductor package includes a heat dissipation substrate including a first conductive through-via embedded therein; a sensor die disposed on the heat dissipation substrate; an insulating encapsulant laterally encapsulating the sensor die; a second conductive through-via penetrating through the insulating encapsulant; and a first redistribution structure and a second redistribution structure disposed on opposite sides of the heat dissipation substrate. The second conductive through-via is in contact with the first conductive through-via. The sensor die is located between the second redistribution structure and the heat dissipation substrate. The second redistribution structure has a window allowing a sensing region of the sensor die receiving light. The first redistribution structure is electrically connected to the sensor die through the first conductive through-via, the second conductive through-via and the second redistribution structure.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsuan Tai, Hao-Yi Tsai, Yu-Chih Huang, Chih-Hao Chang, Chia-Hung Liu, Ban-Li Wu, Ying-Cheng Tseng, Po-Chun Lin
  • Publication number: 20240076417
    Abstract: The present disclosure provides a method for manufacturing an auto-crosslinked hyaluronic acid gel, comprising conducting auto-crosslinking reaction of a colloid containing hyaluronic acid continuously at low temperature in an acidic environment, and treating the reaction product with steam at high temperature to obtain the auto-crosslinked hyaluronic acid gel with high viscosity.
    Type: Application
    Filed: September 5, 2023
    Publication date: March 7, 2024
    Applicant: SCIVISION BIOTECH INC.
    Inventors: TAI-SHIEN HAN, TSUNG-WEI PAN, TOR-CHERN CHEN, CHUN-CHANG CHEN, PO-HSUAN LIN, LI-SU CHEN
  • Publication number: 20240079447
    Abstract: Semiconductor structures and methods for manufacturing the same are provided. The semiconductor structure includes a first stack structure formed over a substrate, and the first stack structure includes a plurality of nanostructures that extend along a first direction. The semiconductor structure includes a second stack structure formed adjacent to the first stack structure, and the second stack structure includes a plurality of nanostructures that extend along the first direction. The semiconductor structure includes a first gate structure formed over the first stack structure, and the first gate structure extends along a second direction. The semiconductor structure also includes a dielectric wall between the first stack structure and the second stack structure, and the dielectric wall includes a low-k dielectric material, and the dielectric wall is connected to the first stack structure and the second stack structure.
    Type: Application
    Filed: February 3, 2023
    Publication date: March 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ta-Chun LIN, Chun-Sheng LIANG, Kuo-Hua PAN, Chih-Hao CHANG, Jhon-Jhy LIAW
  • Publication number: 20240079409
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a first fin structure. The semiconductor device structure includes a first source/drain structure over the first fin structure. The semiconductor device structure includes a first dielectric layer over the first source/drain structure and the substrate. The semiconductor device structure includes a first conductive contact structure in the first dielectric layer and over the first source/drain structure. The semiconductor device structure includes a second dielectric layer over the first dielectric layer and the first conductive contact structure. The semiconductor device structure includes a first conductive via structure passing through the second dielectric layer and connected to the first conductive contact structure. A first width direction of the first conductive contact structure is substantially parallel to a second width direction of the first conductive via structure.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jyun-De WU, Te-Chih HSIUNG, Yi-Chun CHANG, Yi-Chen WANG, Yuan-Tien TU, Peng WANG, Huan-Just LIN
  • Publication number: 20240079451
    Abstract: A semiconductor device includes a substrate, first and second stacks of semiconductor nanosheets, a gate structure, first and second strained layers and first and second dielectric walls. The substrate includes first and second fins. The first and second stacks of semiconductor nanosheets are disposed on the first and second fins respectively. The gate structure wraps the first and second stacks of semiconductor nanosheets. The first and second strained layers are respectively disposed on the first and second fins and abutting the first and second stacks of semiconductor nanosheets. The first dielectric wall is disposed on the substrate and located between the first and second strained layers. The second dielectric wall is disposed on the first dielectric wall and located between the first and second strained layers. A top surface of the second dielectric wall is lower than top surfaces of the first and second strained layers.
    Type: Application
    Filed: January 6, 2023
    Publication date: March 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ta-Chun Lin, Tzu-Hung Liu, Chun-Jun LIN, Chih-Hao Chang, Jhon Jhy Liaw
  • Publication number: 20240077479
    Abstract: A detection system and method for the migrating cell is provided. The system is configured to detect a migrating cell combined with an immunomagnetic bead. The system includes a platform, a microchannel, a magnetic field source, a coherent light source and an optical sensing module. The microchannel is configured to allow the migrating cell to flow in it along a flow direction. The magnetic field source is configured to provide magnetic force to the migrating cell combined with the immunomagnetic bead. The magnetic force includes at least one magnetic force component and the magnetic force component is opposite to the flow direction of the microchannel. The coherent light source is configured to provide the microchannel with the coherent light. The optical sensing module is configured to receive the interference light caused by the coherent light being reflected by the sample inside the microchannel.
    Type: Application
    Filed: August 10, 2023
    Publication date: March 7, 2024
    Applicant: DeepBrain Tech. Inc
    Inventors: Han-Lin Wang, Chia-Wei Chen, Yao-Wen Liang, Ting-Chun Lin, Yun-Ting Kuo, You-Yin Chen, Yu-Chun Lo, Ssu-Ju Li, Ching-Wen Chang, Yi-Chen Lin
  • Publication number: 20240081023
    Abstract: A working fluid recovery device includes an air moving unit, a water removal unit, a working fluid recovery unit, a condenser, and a working fluid collection tank. The air moving unit is configured to suck in a mixed gas including a non-condensable gas, a steam and a vapor phase of working fluid. The water removal unit is connected to the air moving unit, and configured to remove the steam. The working fluid recovery unit is connected to the water removal unit, and configured to recover the vapor phase of the working fluid and exhaust the non-condensable gas. The condenser is connected to the working fluid recovery unit, and configured to condense the vapor phase of the working fluid into a liquid phase of the working fluid. The working fluid collection tank is connected to the condenser, and configured to store the liquid phase of the working fluid.
    Type: Application
    Filed: June 14, 2023
    Publication date: March 7, 2024
    Inventors: Wei-Chih LIN, Ren-Chun CHANG
  • Patent number: 11924072
    Abstract: Systems, methods, and computer-readable media for annotating process and user information for network flows. In some embodiments, a capturing agent, executing on a first device in a network, can monitor a network flow associated with the first device. The first device can be, for example, a virtual machine, a hypervisor, a server, or a network device. Next, the capturing agent can generate a control flow based on the network flow. The control flow may include metadata that describes the network flow. The capturing agent can then determine which process executing on the first device is associated with the network flow and label the control flow with this information. Finally, the capturing agent can transmit the labeled control flow to a second device, such as a collector, in the network.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: March 5, 2024
    Assignee: Cisco Technology, Inc.
    Inventors: Navindra Yadav, Abhishek Ranjan Singh, Anubhav Gupta, Shashidhar Gandham, Jackson Ngoc Ki Pang, Shih-Chun Chang, Hai Trong Vu
  • Patent number: 11923439
    Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a fin structure over the substrate, a gate structure over a first portion of the fin structure, and an epitaxial region formed in a second portion of the fin structure. The epitaxial region can include a first semiconductor layer and an n-type second semiconductor layer formed over the first semiconductor layer. A lattice constant of the first semiconductor layer can be greater than that of the second semiconductor layer.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Chun Chang, Guan-Jie Shen
  • Publication number: 20240074119
    Abstract: An immersion cooling system includes a pressure seal tank, an electronic apparatus, a pressure balance pipe and a relief valve. The pressure seal tank is configured to store coolant. A vapor space is formed in the pressure seal tank above the liquid level of the coolant. The electronic apparatus is completely immersed in the coolant. The pressure balance pipe has a gas collection length. The first port of the pressure balance pipe is disposed on the top surface of the pressure seal tank. The relief valve is disposed on the second port of the pressure balance pipe. The second port is farther away from the top surface of the pressure seal tank than the first port. The gas collection length of the pressure equalization tube allows the concentration of vaporized coolant at the first port to be greater than the concentration of vaporized coolant at the second port.
    Type: Application
    Filed: May 9, 2023
    Publication date: February 29, 2024
    Inventors: Ren-Chun CHANG, Wei-Chih LIN, Sheng-Chi WU, Wen-Yin TSAI, Li-Hsiu CHEN
  • Publication number: 20240074337
    Abstract: A memory device includes a substrate, a bottom electrode disposed over the substrate, a top electrode disposed over the bottom electrode, and a phase change layer disposed between the top electrode and bottom electrode. The phase change layer includes a GeSbTe material that contains a Ge content of about 20 at % or less, a Sb content of about 30 at % or more, and a Te content of about 40 at % at or more.
    Type: Application
    Filed: August 26, 2022
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hengyuan Lee, Cheng-Chun Chang, Chen-Feng Hsu, Tung-Ying Lee, Xinyu BAO
  • Publication number: 20240072736
    Abstract: An amplifier DC bias protection circuit includes an amplifier module, a filter module and a comparator module. The amplifier module converts an input signal into a non-inverting signal and an inverting signal. The filter module blocks AC signals in the non-inverting signal and the inverting signal, thereby providing a first DC bias signal and a second DC bias signal accordingly. The comparator module is configured to determine whether the absolute value of a DC bias difference signal is greater than a predetermined value, and output a determination signal for deactivating the amplifier module when the absolute value of the DC bias difference signal is greater than the predetermined value. The DC bias difference signal is associated with the voltage difference between the first DC bias signal and the second DC bias signal.
    Type: Application
    Filed: December 1, 2022
    Publication date: February 29, 2024
    Applicant: ACER INCORPORATED
    Inventors: Po-Jen Tu, Jia-Ren Chang, Kai-Meng Tzeng, Ming-Chun Yu
  • Publication number: 20240071504
    Abstract: A memory device is provided, including a memory array, a driver circuit, and recover circuit. The memory array includes multiple memory cells. Each memory cell is coupled to a control line, a data line, and a source line and, during a normal operation, is configured to receive first and second voltage signals. The driver circuit is configured to output at least one of the first voltage signal or the second voltage signal to the memory cells. The recover circuit is configured to output, during a recover operation, a third voltage signal, through the driver circuit to at least one of the memory cells. The third voltage signal is configured to have a first voltage level that is higher than a highest level of the first voltage signal or the second voltage signal, or lower than a lowest level of the first voltage signal or the second voltage signal.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pei-Chun LIAO, Yu-Kai CHANG, Yi-Ching LIU, Yu-Ming LIN, Yih WANG, Chieh LEE
  • Publication number: 20240065380
    Abstract: A rope tightener includes a bottom seat having a bottom plate and an annular body portion, a roll-up disc having a pivot hole, and a cover having ratchet teeth and fixed to the roll-up disc. The bottom seat has an accommodating space, and a rotation axle disposed in the pivot hole. The annular body portion has at least one pawl corresponding to the ratchet teeth. The cover drives the roll-up disc to rotate or displace between pressed-down and pulled-up positions relative to the bottom seat. When the cover is located at the pressed-down position, the ratchet teeth are engaged with the pawl, enabling the cover to drive the roll-up disc to rotate about the rotation axle in a single direction. When the cover is located at the pulled-up position, the ratchet teeth are separated from the pawl, enabling the cover to drive the roll-up disc to rotate freely.
    Type: Application
    Filed: May 25, 2023
    Publication date: February 29, 2024
    Inventor: Po-Chun CHANG
  • Publication number: 20240067746
    Abstract: Disclosed herein are humanized antibodies, antigen-binding fragments thereof, and antibody conjugates, that are capable of specifically binding to certain biantennary Lewis antigens, which antigens are expressed in a variety of cancers. The presently disclosed antibodies are useful to target antigen-expressing cells for treatment or detection of disease, including various cancers. Also provided are polynucleotides, vectors, and host cells for producing the disclosed antibodies and antigen-binding fragments thereof. Pharmaceutical compositions, methods of treatment and detection, and uses of the antibodies, antigen-binding fragments, antibody conjugates, and compositions are also provided.
    Type: Application
    Filed: February 28, 2023
    Publication date: February 29, 2024
    Inventors: Tong-Hsuan CHANG, Mei-Chun YANG, Liahng-Yirn LIU, Jerry TING, Shu-Yen CHANG, Yen-Ying CHEN, Yu-Yu LIN, Shu-Lun TANG
  • Publication number: 20240071758
    Abstract: A method for fabricating a high electron mobility transistor (HEMT) includes the steps of forming a buffer layer on a substrate, forming a barrier layer on the buffer layer, forming a p-type semiconductor layer on the barrier layer, forming a gate electrode layer on the p-type semiconductor layer, and patterning the gate electrode layer to form a gate electrode. Preferably, the gate electrode includes an inclined sidewall.
    Type: Application
    Filed: September 23, 2022
    Publication date: February 29, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Tung Yeh, You-Jia Chang, Bo-Yu Chen, Yun-Chun Wang, Ruey-Chyr Lee, Wen-Jung Liao
  • Publication number: 20240071818
    Abstract: A semiconductor device and method of fabricating the same include a substrate, a first epitaxial layer, a first protection layer, and a contact etching stop layer. The substrate includes a PMOS transistor region, and the first epitaxial layer is disposed on the substrate, within the PMOS transistor region. The first protection layer is disposed on the first epitaxial layer, covering surfaces of the first epitaxial layer. The contact etching stop layer is disposed on the first protection layer and the substrate, wherein a portion of the first protection layer is exposed from the contact etching stop layer.
    Type: Application
    Filed: September 22, 2022
    Publication date: February 29, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: I-Wei Chi, Te-Chang Hsu, Yao-Jhan Wang, Meng-Yun Wu, Chun-Jen Huang