Patents by Inventor Chun-Chen Yeh

Chun-Chen Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170200807
    Abstract: A semiconductor device that includes a first fin structure in a first portion of a substrate, and a second fin structure in a second portion of the substrate, wherein the first portion of the substrate is separated from the second portion of the substrate by at least one isolation region. A gate structure present extending from the first fin structure across the isolation region to the second fin structure. The gate structure including a first portion on the first fin structure including a first work function metal having at least one void, an isolation portion that is voidless present overlying the isolation region, and a second portion on the second fin structure including a second work function metal.
    Type: Application
    Filed: March 28, 2017
    Publication date: July 13, 2017
    Inventors: Andrew M. Greene, Qing Liu, Ruilong Xie, Chun-Chen Yeh
  • Publication number: 20170194206
    Abstract: A method for forming strained fins includes etching trenches in a bulk substrate to form fins, filling the trenches with a dielectric fill and recessing the dielectric fill into the trenches to form shallow trench isolation regions. The fins are etched above the shallow trench isolation regions to form a staircase fin structure with narrow top portions of the fins. Gate structures are formed over the top portions of the fins. Raised source ad drain regions are epitaxially grown on opposite sides of the gate structure. A pre-morphization implant is performed to generate defects in the substrate to couple strain into the top portions of the fins.
    Type: Application
    Filed: March 23, 2017
    Publication date: July 6, 2017
    Inventors: Kangguo Cheng, Juntao Li, Chun-Chen Yeh
  • Patent number: 9691763
    Abstract: A semiconductor device includes a substrate extending in a first direction to define a substrate length and a second direction perpendicular to the first direction to define a substrate width. A first semiconductor fin is formed on an upper surface of the substrate. The first semiconductor fin extends along the second direction at a first distance to define a first fin width. A second semiconductor fin is formed on the upper surface of the substrate. The second semiconductor fin extends along the second direction at a second distance to define a second fin width. The second distance may be different with respect to the first distance such that the first and second fin widths are different with respect to one another.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Tenko Yamashita, Chun-chen Yeh
  • Publication number: 20170178967
    Abstract: A semiconductor device that includes a first fin structure in a first portion of a substrate, and a second fin structure in a second portion of the substrate, wherein the first portion of the substrate is separated from the second portion of the substrate by at least one isolation region. A gate structure present extending from the first fin structure across the isolation region to the second fin structure. The gate structure including a first portion on the first fin structure including a first work function metal having at least one void, an isolation portion that is voidless present overlying the isolation region, and a second portion on the second fin structure including a second work function metal.
    Type: Application
    Filed: November 23, 2016
    Publication date: June 22, 2017
    Inventors: Andrew M. Greene, Qing Liu, Ruilong Xie, Chun-Chen Yeh
  • Patent number: 9685537
    Abstract: A method of fabricating a vertical transistor is provided, the method including providing a starting semiconductor structure, the starting semiconductor structure including a semiconductor substrate, an impurity layer of n-type or p-type over the semiconductor substrate, a first hard mask layer over the semiconductor layer, a first dielectric layer over the first hard mask layer, a second hard mask layer over the first dielectric layer, a second dielectric layer over the second hard mask layer and a protective layer over the second dielectric layer. The method further includes patterning the second dielectric layer and protective layer, the patterning forming an opening therein, forming a wrap-around spacer on an inner sidewall of the opening, the forming leaving a smaller opening, forming a vertical channel, and setting a gate length of a wrap-around gate by removing an outer portion of the structure.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: June 20, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Tenko Yamashita, Kangguo Cheng, Chun-Chen Yeh
  • Patent number: 9685555
    Abstract: Tapered source and drain contacts for use in an epitaxial FinFET prevent short circuits and damage to parts of the FinFET during contact processing, thus improving device reliability. The inventive contacts feature tapered sidewalls and a pedestal where electrical contact is made to fins in the source and drain regions. The pedestal also provides greater contact area to the fins, which are augmented by extensions. Raised isolation regions define a valley around the fins. During source/drain contact formation, the valley is lined with a conformal barrier that also covers the fins themselves. The barrier protects underlying local oxide and adjacent isolation regions against gouging while forming the contact. The valley is filled with an amorphous silicon layer that protects the epitaxial fin material from damage during contact formation. A simple tapered structure is used for the gate contact.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: June 20, 2017
    Assignees: STMICROELECTRONICS, INC., GLOBALFOUNDRIES, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qing Liu, Nicolas Loubet, Chun-chen Yeh, Ruilong Xie, Xiuyu Cai
  • Publication number: 20170170073
    Abstract: Techniques for forming closely packed hybrid nanowires are provided. In one aspect, a method for forming hybrid nanowires includes: forming alternating layers of a first and a second material in a stack on a substrate; forming a first trench(es) and a second trench(es) in the stack; laterally etching the layer of the second material selectively within the first trench(es) to form first cavities in the layer; growing a first epitaxial material within the first trench(es) filling the first cavities; laterally etching the layer of the second material selectively within the second trench(es) to form second cavities in the layer; growing a second epitaxial material within the second trench(es) filling the second cavities, wherein the first epitaxial material in the first cavities and the second epitaxial material in the second cavities are the hybrid nanowires. A nanowire FET device and method for formation thereof are also provided.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 15, 2017
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 9680020
    Abstract: A method for forming fin field effect transistors includes epitaxially growing source and drain (S/D) regions on fins, the S/D regions including a diamond-shaped cross section and forming a dielectric liner over the S/D regions. A dielectric fill is etched over the S/D regions to expose a top portion of the diamond-shaped cross section. The fins are recessed into the diamond-shaped cross section. A top portion of the diamond-shaped cross section of the S/D regions is exposed. A contact liner is formed on the top portion of the diamond-shaped cross section of the S/D regions and in a recess where the fins were recessed. Contacts are formed over surfaces of the top portion and in the recess.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: June 13, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Veeraraghavan S. Basker, Chung-Hsun Lin, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 9666726
    Abstract: Transistors and methods for fabricating the same include annealing channel portions of one or more semiconductor fins that are uncovered by a protective layer in a gaseous environment to reduce fin width, to produce a fin profile that is widest at the bottom and tapers toward the top, and to round corners of the one or more semiconductor fins.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: May 30, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, RENESAS ELECTRONICS CORPORATION
    Inventors: Veeraraghavan S. Basker, Shogo Mochizuki, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 9660083
    Abstract: A FinFET transistor includes a fin of semiconductor material with a transistor gate electrode extending over a channel region. Raised source and drain regions of first epitaxial growth material extending from the fin on either side of the transistor gate electrode. Source and drain contact openings extend through a pre-metallization dielectric material to reach the raised source and drain regions. Source and drain contact regions of second epitaxial growth material extend from the first epitaxial growth material at the bottom of the source and drain contact openings. A metal material fills the source and drain contact openings to form source and drain contacts, respectively, with the source and drain contact regions. The drain contact region may be offset from the transistor gate electrode by an offset distance sufficient to provide a laterally diffused metal oxide semiconductor (LDMOS) configuration within the raised source region of first epitaxial growth material.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: May 23, 2017
    Assignees: STMICROELECTRONICS, INC., GLOBALFOUNDRIES INC, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qing Liu, Ruilong Xie, Chun-Chen Yeh, Xiuyu Cai
  • Patent number: 9660077
    Abstract: A method for forming strained fins includes etching trenches in a bulk substrate to form fins, filling the trenches with a dielectric fill and recessing the dielectric fill into the trenches to form shallow trench isolation regions. The fins are etched above the shallow trench isolation regions to form a staircase fin structure with narrow top portions of the fins. Gate structures are formed over the top portions of the fins. Raised source ad drain regions are epitaxially grown on opposite sides of the gate structure. A pre-morphization implant is performed to generate defects in the substrate to couple strain into the top portions of the fins.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: May 23, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Juntao Li, Chun-Chen Yeh
  • Patent number: 9660035
    Abstract: A semiconductor device includes a semiconductor-on-insulator substrate having an insulator layer, and at least one silicon germanium (SiGe) fin having a superlattice structure. The SiGe fin is formed on an upper surface of the insulator layer. A gate stack is formed on an upper surface of the at least one silicon germanium fin. The gate stack includes first and second opposing spacers defining a gate length therebetween. First and second epitaxial source/drain structures are formed on the insulator layer. The first and second epitaxial source/drain structures extend beneath the spacer to define a silicon germanium gate channel beneath the gate stack.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: May 23, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 9660057
    Abstract: Methods and structures for forming a reduced resistance region of a finFET are described. According to some aspects, a dummy gate and first gate spacer may be formed above a fin comprising a first semiconductor composition. At least a portion of source and drain regions of the fin may be removed, and a second semiconductor composition may be formed in the source and drain regions in contact with the first semiconductor composition. A second gate spacer may be formed covering the first gate spacer. The methods may be used to form finFETs having reduced resistance at source and drain junctions.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: May 23, 2017
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation, GLOBALFOUNDRIES Inc.
    Inventors: Qing Liu, Ruilong Xie, Chun-chen Yeh, Xiuyu Cai, Kejia Wang
  • Publication number: 20170141038
    Abstract: Self-aligned contacts of a semiconductor device are fabricated by forming a metal gate structure on a portion of a semiconductor layer of a substrate. The metal gate structure contacts inner sidewalls of a gate spacer. A second sacrificial epitaxial layer is formed on a first sacrificial epitaxial layer. The first sacrificial epitaxial layer is adjacent to the gate spacer and is formed on source/drain regions of the semiconductor layer. The first and second sacrificial epitaxial layers are recessed. The recessing exposes at least a portion of the source/drain regions. A first dielectric layer is formed on the exposed portions of the source/drain regions, and over the gate spacer and metal gate structure. At least one cavity within the first dielectric layer is formed above at least one of the exposed portions of source/drain regions. At least one metal contact is formed within the at least one cavity.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 18, 2017
    Applicant: International Business Machines Corporation
    Inventors: Hong HE, Chiahsun TSENG, Chun-chen YEH, Yunpeng YIN
  • Patent number: 9653579
    Abstract: A method for making a semiconductor device may include forming first and second spaced apart semiconductor active regions with an insulating region therebetween, forming at least one sacrificial gate line extending between the first and second spaced apart semiconductor active regions and over the insulating region, and forming sidewall spacers on opposing sides of the at least one sacrificial gate line. The method may further include removing portions of the at least one sacrificial gate line within the sidewall spacers and above the insulating region defining at least one gate line end recess, filling the at least one gate line end recess with a dielectric material, and forming respective replacement gates in place of portions of the at least one sacrificial gate line above the first and second spaced apart semiconductor active regions.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: May 16, 2017
    Assignees: STMicroelectronics, Inc., GLOBALFOUNDRIES Inc, International Business Machines Corporation
    Inventors: Qing Liu, Ruilong Xie, Xiuyu Cai, Chun-chen Yeh, Kejia Wang
  • Patent number: 9646962
    Abstract: A semiconductor device includes an electrostatic discharge (ESD) device formed adjacent to a first fin field effect transistor (finFET). The device includes a substrate, the first finFET and the ESD device. The first finFET is formed such that it includes finFET fins extending from the substrate. The ESD device includes two vertically stacked PN diodes including vertically stacked first, second, third and fourth layers. The first layer is an N doped layer and is disposed directly over the substrate, the second layer is a P doped layer and is disposed directly over the first layer, the third layer is an N doped layer and is disposed directly over the second layer and the fourth layer is a P doped layer and is disposed directly over the third layer.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: May 9, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC., GLOBALFOUNDRIES INC.
    Inventors: Qing Liu, Ruilong Xie, Chun-chen Yeh
  • Patent number: 9646929
    Abstract: A wafer chip and a method of designing the chip is disclosed. A first fuse is formed having a first critical dimension and a second fuse having a second critical dimension are formed in a layer of the chip. A voltage may be applied to burn out at least one of the first fuse and the second fuse. The first critical dimension of the first fuse may result from applying a first mask to the layer and applying light having a first property to the mask. The second critical dimension of the second fuse may result from applying a second mask to the layer and applying light having a second property to the mask.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: May 9, 2017
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Hsueh-Chung Chen, Chiahsun Tseng, Chun-Chen Yeh, Ailian Zhao
  • Publication number: 20170125306
    Abstract: A method for fabricating a semiconductor device includes depositing a sacrificial liner in self-aligned contact openings in first and second regions. The openings are filled with a sacrificial material. The second region is blocked with a first mask to remove the sacrificial material from the first region. The first mask is removed from the second region, and the sacrificial liner is removed from the first region. A first liner is formed in the openings of the first region, and first contacts are formed in the first region on the first liner. The first region is blocked with a second mask to remove the sacrificial material from the second region. The second mask is removed from the first region, and the sacrificial liner is removed from the second region. A second liner is formed in the openings of the second region, and second contacts are formed in the second region.
    Type: Application
    Filed: October 6, 2016
    Publication date: May 4, 2017
    Inventors: Praneet Adusumilli, Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20170125338
    Abstract: A method for fabricating a semiconductor device includes depositing a sacrificial liner in self-aligned contact openings in first and second regions. The openings are filled with a sacrificial material. The second region is blocked with a first mask to remove the sacrificial material from the first region. The first mask is removed from the second region, and the sacrificial liner is removed from the first region. A first liner is formed in the openings of the first region, and first contacts are formed in the first region on the first liner. The first region is blocked with a second mask to remove the sacrificial material from the second region. The second mask is removed from the first region, and the sacrificial liner is removed from the second region. A second liner is formed in the openings of the second region, and second contacts are formed in the second region.
    Type: Application
    Filed: May 18, 2016
    Publication date: May 4, 2017
    Inventors: Praneet Adusumilli, Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20170125289
    Abstract: A method for fabricating a semiconductor device includes depositing a sacrificial liner in self-aligned contact openings in first and second regions. The openings are filled with a sacrificial material. The second region is blocked with a first mask to remove the sacrificial material from the first region. The first mask is removed from the second region, and the sacrificial liner is removed from the first region. A first liner is formed in the openings of the first region, and first contacts are formed in the first region on the first liner. The first region is blocked with a second mask to remove the sacrificial material from the second region. The second mask is removed from the first region, and the sacrificial liner is removed from the second region. A second liner is formed in the openings of the second region, and second contacts are formed in the second region.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 4, 2017
    Inventors: Praneet Adusumilli, Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh