Patents by Inventor Chun-Chen Yeh

Chun-Chen Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10249538
    Abstract: Disclosed is a method of forming a structure with multiple vertical field effect transistors (VFETs). In the method, lower source/drain regions are formed on a substrate such that semiconductor fins extend vertically above the lower source/drain regions. Lower spacers are formed on the lower source/drain regions and positioned laterally adjacent to the semiconductor fins. Gates, having co-planar top surfaces, are formed on the lower spacers and positioned laterally adjacent to the semiconductor fins. However, process steps are performed prior to gate formation to ensure that the top surfaces of the lower source/drain region and lower spacer of a first VFET are below the levels of the top surfaces of the lower source/drain region and lower spacer, respectively, of a second VFET. As a result, the first VFET will have a longer gate, higher threshold voltage and lower switching speed. Also disclosed is the structure formed according to the method.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: April 2, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yi Qi, Hsien-Ching Lo, Jianwei Peng, Wei Hong, Yanping Shen, Yongjun Shi, Hui Zang, Ruilong Xie, Kangguo Cheng, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 10249502
    Abstract: Techniques for forming a metastable phosphorous P-doped silicon Si source drain contacts are provided. In one aspect, a method for forming n-type source and drain contacts includes the steps of: forming a transistor on a substrate; depositing a dielectric over the transistor; forming contact trenches in the dielectric that extend down to source and drain regions of the transistor; forming an epitaxial material in the contact trenches on the source and drain regions; implanting P into the epitaxial material to form an amorphous P-doped layer; and annealing the amorphous P-doped layer under conditions sufficient to form a crystalline P-doped layer having a homogenous phosphorous concentration that is greater than about 1.5×1021 atoms per cubic centimeter (at./cm3). Transistor devices are also provided utilizing the present P-doped Si source and drain contacts.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Zuoguang Liu, Shogo Mochizuki, Hiroaki Niimi, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 10249758
    Abstract: After forming a gate structure over a semiconductor fin that extends upwards from a semiconductor substrate portion, a sigma cavity is formed within the semiconductor fin on each side of the gate structure. A semiconductor buffer region composed of an un-doped stress-generating semiconductor material is epitaxially growing from faceted surfaces of the sigma cavity. Finally, a doped semiconductor region composed of a doped stress-generating semiconductor material is formed on the semiconductor buffer region to completely fill the sigma cavity. The doped semiconductor region is formed to have substantially vertical sidewalls for formation of a uniform source/drain junction profile.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Hemanth Jagannathan, Shogo Mochizuki, Gen Tsutsui, Chun-Chen Yeh
  • Patent number: 10249736
    Abstract: A method of forming the fin structure that includes forming a replacement gate structure on a channel region of the at least one replacement fin structure; and forming an encapsulating dielectric encapsulating the replacement fin structure leaving a portion of the replacement gate structure exposed. The exposed portion of the replacement gate structure is etched to provide an opening through the encapsulating dielectric to the replacement fin structure. The replacement fin structure is etched selectively to the dielectric to provide a fin opening having a geometry dictated by the encapsulating dielectric. Functional fin structures of a second semiconductor material is epitaxially grown on the growth surface of the substrate substantially filling the fin opening.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, Chun-chen Yeh
  • Patent number: 10249714
    Abstract: A semiconductor device including a gate structure on a channel region portion of a fin structure, and at least one of an epitaxial source region and an epitaxial drain region on a source region portion and a drain region portion of the fin structure. At least one of the epitaxial source region portion and the epitaxial drain region portion include a first concentration doped portion adjacent to the fin structure, and a second concentration doped portion on the first concentration doped portion. The second concentration portion has a greater dopant concentration than the first concentration doped portion. An extension dopant region extending into the channel portion of the fin structure having an abrupt dopant concentration gradient of n-type or p-type dopants of 7 nm per decade or greater.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: April 2, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, RENESAS ELECTRONICS CORPORATION
    Inventors: Dechao Guo, Shogo Mochizuki, Andreas Scholze, Chun-Chen Yeh
  • Publication number: 20190097060
    Abstract: A vertical injection punchthrough based metal oxide semiconductor (VIPMOS) device and method of manufacturing the same, include a control gate, an erase gate, a floating gate, and an active area where the control gate, the erase gate, and the floating gate are coplanar and perpendicular to the active area.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Inventors: Effendi Leobandung, Yulong Li, Tak Ning, Paul Michael Solomon, Chun-Chen Yeh
  • Publication number: 20190096677
    Abstract: One illustrative method disclosed includes selectively forming sacrificial conductive source/drain cap structures on and in contact with first and second source/drain contact structures positioned on opposite sides of a gate of a transistor and removing and replacing the spaced-apart sacrificial conductive source/drain cap structures with first and second separate, laterally spaced-apart insulating source/drain cap structures that are positioned on the first and second source/drain contact structures. The method also includes forming a gate contact opening that extends through a space between the insulating source/drain cap structures and through the gate cap so as to expose a portion of the gate structure and forming a conductive gate contact structure (CB) that is conductively coupled to the gate structure.
    Type: Application
    Filed: September 22, 2017
    Publication date: March 28, 2019
    Inventors: Ruilong Xie, Hui Zang, Kangguo Cheng, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10242991
    Abstract: A method for forming a floating gate memory cell includes: forming an active region on a semiconductor substrate; forming a gate stack on the active region, the gate stack including a first gate layer defining a floating gate of the memory cell structure, a dielectric layer formed on the first gate layer, and a second gate layer defining a control gate of the memory cell structure formed on the dielectric layer; forming first and second source/drain regions in the active region, self-aligned with the gate stack; forming an erase/injection gate on at least a portion of the dielectric layer and spaced laterally from the control gate, the erase/injection gate being proximate to and above the floating gate; and forming multiple contacts providing electrical connection with the first and second source/drain regions, the control gate and the erase/injection gate.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: March 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, Yulong Li, Paul M. Solomon, Chun-Chen Yeh
  • Patent number: 10242916
    Abstract: A method for forming strained fins includes etching trenches in a bulk substrate to form fins, filling the trenches with a dielectric fill and recessing the dielectric fill into the trenches to form shallow trench isolation regions. The fins are etched above the shallow trench isolation regions to form a staircase fin structure with narrow top portions of the fins. Gate structures are formed over the top portions of the fins. Raised source ad drain regions are epitaxially grown on opposite sides of the gate structure. A pre-morphization implant is performed to generate defects in the substrate to couple strain into the top portions of the fins.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: March 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Juntao Li, Chun-Chen Yeh
  • Patent number: 10243074
    Abstract: A method of fabricating features of a vertical transistor include performing a first etch process to form a first portion of a fin in a substrate; depositing a spacer material on sidewalls of the first portion of the fin; performing a second etch process using the spacer material as a pattern to elongate the fin and form a second portion of the fin in the substrate, the second portion having a width that is greater than the first portion; oxidizing a region of the second portion of the fin beneath the spacer material to form an oxidized channel region; and removing the oxidized channel region to form a vacuum channel.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: March 26, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES, INC., STMICROELECTRONICS, INC.
    Inventors: Qing Liu, Ruilong Xie, Chun-chen Yeh
  • Patent number: 10236363
    Abstract: Device structures and fabrication methods for a vertical field-effect transistor. A semiconductor fin is formed that projects from a first source/drain region. A first spacer layer is formed on the first source/drain region. A dielectric layer is formed that extends in the vertical direction from the first spacer layer to a top surface of the semiconductor fin. The dielectric layer is recessed in the vertical direction, and a second spacer layer is formed on the recessed dielectric layer such that the dielectric layer is located in the vertical direction between the first spacer layer and the second spacer layer. After the dielectric layer is removed to open a space between the first spacer layer and the second spacer layer, a gate electrode is formed in the space. The vertical field-effect transistor has a gate length that is equal to a thickness of the recessed dielectric layer.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: March 19, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Chun-chen Yeh, Kangguo Cheng, Tenko Yamashita
  • Patent number: 10224417
    Abstract: A method of forming a fin field effect transistor (finFET), including forming a temporary gate structure having a sacrificial gate layer and a dummy gate layer on the sacrificial gate layer, forming a gate spacer layer on each sidewall of the temporary gate structure, forming a source/drain spacer layer on the outward-facing sidewall of each gate spacer layer, removing the dummy gate layer to expose the sacrificial gate layer, removing the sacrificial gate layer to form a plurality of recessed cavities, and forming a gate structure, where the gate structure occupies at least a portion of the plurality of recessed cavities.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: March 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10224420
    Abstract: A method of forming a semiconductor device that includes forming a fin structure from a bulk semiconductor substrate and forming an isolation region contacting a lower portion of a sidewall of the fin structure, wherein an upper portion of the sidewall of the fin structure is exposed. A sacrificial spacer is formed on the upper portion of the sidewall of the fin structure. The isolation regions are recessed to provide an exposed section of the sidewall of the fin structure. A doped semiconductor material is formed on the exposed section of the lower portion of the sidewall of the fin structure. Dopant is diffused from the doped semiconductor material to a base portion of the fin structure.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: March 5, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10217672
    Abstract: A device includes, among other things, a first vertical transistor device positioned above a semiconductor substrate. The first vertical transistor device includes a first gate structure, a first top spacer positioned above the first gate structure and having a first thickness in a vertical direction, and a first doped top source/drain structure positioned above the first top spacer. A second vertical transistor device positioned above the semiconductor substrate includes a second gate structure, a second top spacer positioned above the second gate structure and having a second thickness in a vertical direction less than the first thickness, and a second doped top source/drain structure positioned above the second top spacer.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: February 26, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Chun-Chen Yeh, Tenko Yamashita, Kangguo Cheng
  • Publication number: 20190051659
    Abstract: The disclosure is directed to an integrated circuit structure and method of forming the same. The integrated circuit structure may include: a first device region including: a floating gate structure substantially surrounding a first fin that is over a substrate; a first bottom source/drain within the substrate, and beneath the first fin and the floating gate structure; a first top source/drain over the first fin and the floating gate structure; a first spacer substantially surrounding the first top source/drain and disposed over the floating gate structure; and a gate structure substantially surrounding and insulated from the floating gate structure, the gate structure being disposed over the substrate and having a height greater than a height of the floating gate.
    Type: Application
    Filed: August 10, 2017
    Publication date: February 14, 2019
    Inventors: Ruilong Xie, Chun-Chen Yeh, Tenko Yamashita, Kangguo Cheng
  • Patent number: 10204907
    Abstract: A memory device including a plurality of memory unit cells arranged in a crossbar configuration for a neural network is provided. Each of the memory unit cells includes a readout transistor, a charging transistor, a discharging transistor, and a metal-insulator-metal (MIM) capacitor connected to one of source/drain regions of each of the charging transistor and the discharging transistor and a functional gate of the readout transistor for storing analog information.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: February 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, Yulong Li, Paul Solomon, Chun-Chen Yeh
  • Patent number: 10199480
    Abstract: A semiconductor structure includes a semiconductor substrate, a bottom source/drain layer for a first vertical transistor over the semiconductor substrate, a vertical channel over the source/drain layer, and a metal gate wrapped around the vertical channel, the vertical channel having a fixed height relative to the metal gate at an interface therebetween. The semiconductor structure further includes a top source/drain layer over the vertical channel, and a self-aligned contact to each of the top and bottom source/drain layer and the gate. The semiconductor structure can be realized by providing a semiconductor substrate with a bottom source/drain layer thereover, forming a vertical channel over the bottom source/drain layer, forming a dummy gate wrapped around the vertical channel, and forming a bottom spacer layer and a top spacer layer around a top portion and a bottom portion, respectively, of the vertical channel, a remaining center portion of the vertical channel defining a fixed vertical channel height.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: February 5, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Tenko Yamashita, Kangguo Cheng, Chun-Chen Yeh
  • Patent number: 10199464
    Abstract: Techniques for VFET top source and drain epitaxy are provided. In one aspect, a method of forming a VFET includes: patterning a fin to form a bottom source/drain region and a fin channel of the VFET; forming bottom spacers on the bottom source/drain region; depositing a high-? gate dielectric onto the bottom spacers and along sidewalls of the fin channel; forming gates over the bottom spacers; forming top spacers on the gates; partially recessing the fin channel to create a trench between the top spacers; forming a nitride liner along sidewalls of the trench; fully recessing the fin channel through the trench such that side portions of the fin channel remain intact; and forming a doped epitaxial top source and drain region over the fin channel. Methods not requiring a nitride liner and VFET formed using the present techniques are also provided.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: February 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Cheng Chi, Chi-Chun Liu, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20190035911
    Abstract: A substrate structure having a set of nanosheet layers and a set of sacrificial layers stacked upon a substrate is received and a dummy gate is formed upon the nanosheet layers and the sacrificial layers. A portion of a subset of the set of sacrificial layers and a subset of the set of nanosheet layers is etched. A portion of a subset of the subset of sacrificial layers is etched to create divots within the sacrificial layers. A divot fill layer is deposited. The divot fill layer is etched to form an inner spacer between the nanosheet layers. A source/drain region is formed adjacent to the nanosheet layers and the divots. A remaining portion of the subset of the sacrificial layers is removed. The subset of the nanosheet layers is etched to a desired channel thickness producing faceted surfaces between the subset of nanosheet layers and the inner spacer.
    Type: Application
    Filed: July 25, 2017
    Publication date: January 31, 2019
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, NICOLAS LOUBET, Ruilong Xie, TENKO YAMASHITA, CHUN-CHEN YEH
  • Publication number: 20190035913
    Abstract: A substrate structure having a set of nanosheet layers and a set of sacrificial layers stacked upon a substrate is received and a dummy gate is formed upon the nanosheet layers and the sacrificial layers. A portion of a subset of the set of sacrificial layers and a subset of the set of nanosheet layers is etched. A portion of a subset of the subset of sacrificial layers is etched to create divots within the sacrificial layers. A divot fill layer is deposited. The divot fill layer is etched to form an inner spacer between the nanosheet layers. A source/drain region is formed adjacent to the nanosheet layers and the divots. A remaining portion of the subset of the sacrificial layers is removed. The subset of the nanosheet layers is etched to a desired channel thickness producing faceted surfaces between the subset of nanosheet layers and the inner spacer.
    Type: Application
    Filed: May 16, 2018
    Publication date: January 31, 2019
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Nicolas Loubet, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh