Patents by Inventor Chun-Chen Yeh

Chun-Chen Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10692868
    Abstract: A semiconductor material layer is deposited on a p-type source/drain region of a p-type transistor device and an n-type source/drain region of an n-type transistor device. The p-type device transistor device and the n-type transistor device are formed on a substrate of a semiconductor device. The semiconductor device includes a trench formed through an inter-level dielectric layer. The inter-level dielectric layer is formed over the n-type transistor device and the p-type transistor device. The trench exposes the p-type source/drain region of the p-type transistor device and the n-type source/drain region of the n-type transistor device. An element is implanted in the semiconductor material layer to form an amorphous layer on p-type source drain region and the n-type source/drain region. The amorphous layer is annealed to form a first metastable alloy layer upon the p-type source/drain region and a second metastable alloy layer upon the n-type source/drain region.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: June 23, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Oleg Gluschenkov, Shogo Mochizuki, Hiroaki Niimi, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 10680064
    Abstract: Techniques for VFET top source and drain epitaxy are provided. In one aspect, a method of forming a VFET includes: patterning a fin to form a bottom source/drain region and a fin channel of the VFET; forming bottom spacers on the bottom source/drain region; depositing a high-? gate dielectric onto the bottom spacers and along sidewalls of the fin channel; forming gates over the bottom spacers; forming top spacers on the gates; partially recessing the fin channel to create a trench between the top spacers; forming a nitride liner along sidewalls of the trench; fully recessing the fin channel through the trench such that side portions of the fin channel remain intact; and forming a doped epitaxial top source and drain region over the fin channel. Methods not requiring a nitride liner and VFET formed using the present techniques are also provided.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: June 9, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Cheng Chi, Chi-Chun Liu, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10680081
    Abstract: A method of fabricating a top source/drain junction of a vertical transistor includes forming a structure including a bottom source/drain, a fin channel extending vertically from the bottom source/drain, and a gate arranged around the fin channel, the gate including a dielectric layer, a gate metal, and spacers arranged on top and bottom surfaces of the gate; etching to form a recess in a top surface of the fin, the recess having sidewalls that form oblique angles with respect to sidewalls of the fin; forming a top source/drain on the fin and within the recess; doping the top source/drain with a dopant; and annealing to diffuse the dopants from the top source/drain into the fin.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: June 9, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Muthumanickam Sankarapandian, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20200152765
    Abstract: A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
    Type: Application
    Filed: January 15, 2020
    Publication date: May 14, 2020
    Inventors: XIUYU CAI, CHUN-CHEN YEH, QING LIU, RUILONG XIE
  • Publication number: 20200144388
    Abstract: A substrate structure includes a set of nanosheet layers stacked upon a substrate. The substrate structure includes a p-channel region and an n-channel region. The substrate structure further includes divots within the p-channel region and the n-channel region. A first liner is formed within the divots of the n-channel region. The first liner is formed of a material having a positive charge. A second liner is formed within the divots of the p-channel region. The second liner is formed of a material having a negative charge. A p-type epitaxy is deposited in the p-channel region to form first air gap spacers of the divots in the p-channel region. An n-type epitaxy is deposited in the n-channel region to form second air gap spacers of the divots in the n-channel region.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Applicant: International Business Machines Corporation
    Inventors: Ruilong Xie, Kangguo Cheng, CHUN-CHEN YEH, TENKO YAMASHITA
  • Publication number: 20200135884
    Abstract: Embodiments are directed to a method and resulting structures for a semiconductor device having reduced parasitic capacitance. A semiconductor fin is formed on a substrate. A first bottom spacer is formed on a surface of the substrate and a sidewall of the semiconductor fin. A sacrificial spacer is formed over a channel region of the semiconductor fin and a portion of the first bottom spacer. A second bottom spacer is formed on a surface of the first bottom spacer and adjacent to the sacrificial spacer. The sacrificial spacer is removed and a conductive gate is formed over the channel region of the semiconductor fin.
    Type: Application
    Filed: January 2, 2020
    Publication date: April 30, 2020
    Inventors: Kangguo Cheng, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10629709
    Abstract: A method of forming a semiconductor device that includes forming a fin structure from a bulk semiconductor substrate and forming an isolation region contacting a lower portion of a sidewall of the fin structure, wherein an upper portion of the sidewall of the fin structure is exposed. A sacrificial spacer is formed on the upper portion of the sidewall of the fin structure. The isolation regions are recessed to provide an exposed section of the sidewall of the fin structure. A doped semiconductor material is formed on the exposed section of the lower portion of the sidewall of the fin structure. Dopant is diffused from the doped semiconductor material to a base portion of the fin structure.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: April 21, 2020
    Assignee: Tessera, Inc.
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10622457
    Abstract: A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: April 14, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBAL FOUNDRIES INC., STMICROELECTRONICS, INC.
    Inventors: Xiuyu Cai, Chun-Chen Yeh, Qing Liu, Ruilong Xie
  • Patent number: 10622357
    Abstract: A semiconductor substrate includes a bulk substrate layer that extends along a first axis to define a width and a second axis perpendicular to the first axis to define a height. A plurality of hetero semiconductor fins includes an epitaxial material formed on a first region of the bulk substrate layer. A plurality of non-hetero semiconductor fins is formed on a second region of the bulk substrate layer different from the first region. The non-hetero semiconductor fins are integrally formed from the bulk substrate layer such that the material of the non-hetero semiconductor fins is different from the epitaxial material.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: April 14, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES, INC., STMICROELECTRONICS, INC.
    Inventors: Xiuyu Cai, Qing Liu, Ruilong Xie, Chun-Chen Yeh
  • Patent number: 10615277
    Abstract: Vertical field effect transistor complementary metal oxide semiconductor (VFET CMOS) structures and methods of fabrication include a single mask level for forming the dual source/drains in both the NFET region and the PFET region. The VFET CMOS structures and methods of fabrication further include equal epi-to-channel distances in both the NFET region and PFET regions.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10600778
    Abstract: Fabricating a semiconductor device includes receiving a substrate structure including a substrate. The substrate structure further includes a first bottom source/drain and a first fin formed on a vertical transistor portion of the substrate and a second bottom source/drain and a second fin formed on a varactor portion of the substrate. The substrate structure further includes a bottom spacer formed on the first bottom source/drain of the vertical transistor portion and the second bottom source/drain of the varactor portion. A mask is applied to the portion of the bottom spacer formed on the first bottom source/drain. The portion of the bottom spacer formed on the second bottom source/drain of the varactor portion is removed. The mask is removed from the portion of the bottom spacer formed on the first bottom source/drain. A gate oxide is deposited on the vertical transistor portion and the varactor portion.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: March 24, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10593780
    Abstract: A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: March 17, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC., STMICROELECTRONICS, INC.
    Inventors: Xiuyu Cai, Chun-Chen Yeh, Qing Liu, Ruilong Xie
  • Publication number: 20200083322
    Abstract: A method of forming a punch through stop region in a fin structure is disclosed. The method may include forming a doped glass layer on a fin structure and forming a masking layer on the doped glass layer. The method may further include removing a portion of the masking layer from an active portion of the fin structure, and removing an exposed portion the doped glass layer that is present on the active portion of the fin structure. A remaining portion of the doped glass layer is present on the isolation portion of the fin structure. Dopant from the doped glass layer may then be diffused into the isolation portion of the fin structure to form the punch through stop region between the active portion of the fin structure and a supporting substrate.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 12, 2020
    Inventors: KANGGUO CHENG, SANJAY C. MEHTA, XIN MIAO, CHUN-CHEN YEH
  • Publication number: 20200083323
    Abstract: A method of forming a punch through stop region in a fin structure is disclosed. The method may include forming a doped glass layer on a fin structure and forming a masking layer on the doped glass layer. The method may further include removing a portion of the masking layer from an active portion of the fin structure, and removing an exposed portion the doped glass layer that is present on the active portion of the fin structure. A remaining portion of the doped glass layer is present on the isolation portion of the fin structure. Dopant from the doped glass layer may then be diffused into the isolation portion of the fin structure to form the punch through stop region between the active portion of the fin structure and a supporting substrate.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 12, 2020
    Inventors: KANGGUO CHENG, SANJAY C. MEHTA, XIN MIAO, CHUN-CHEN YEH
  • Patent number: 10580854
    Abstract: A method of forming a punch through stop region in a fin structure is disclosed. The method may include forming a doped glass layer on a fin structure and forming a masking layer on the doped glass layer. The method may further include removing a portion of the masking layer from an active portion of the fin structure, and removing an exposed portion the doped glass layer that is present on the active portion of the fin structure. A remaining portion of the doped glass layer is present on the isolation portion of the fin structure. Dopant from the doped glass layer may then be diffused into the isolation portion of the fin structure to form the punch through stop region between the active portion of the fin structure and a supporting substrate.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: March 3, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Sanjay C. Mehta, Xin Miao, Chun-Chen Yeh
  • Patent number: 10580855
    Abstract: A method of forming a punch through stop region in a fin structure is disclosed. The method may include forming a doped glass layer on a fin structure and forming a masking layer on the doped glass layer. The method may further include removing a portion of the masking layer from an active portion of the fin structure, and removing an exposed portion the doped glass layer that is present on the active portion of the fin structure. A remaining portion of the doped glass layer is present on the isolation portion of the fin structure. Dopant from the doped glass layer may then be diffused into the isolation portion of the fin structure to form the punch through stop region between the active portion of the fin structure and a supporting substrate.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: March 3, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Sanjay C. Mehta, Xin Miao, Chun-Chen Yeh
  • Publication number: 20200066583
    Abstract: A method for fabricating a semiconductor device includes depositing a sacrificial liner in self-aligned contact openings in first and second regions. The openings are filled with a sacrificial material. The second region is blocked with a first mask to remove the sacrificial material from the first region. The first mask is removed from the second region, and the sacrificial liner is removed from the first region. A first liner is formed in the openings of the first region, and first contacts are formed in the first region on the first liner. The first region is blocked with a second mask to remove the sacrificial material from the second region. The second mask is removed from the first region, and the sacrificial liner is removed from the second region. A second liner is formed in the openings of the second region, and second contacts are formed in the second region.
    Type: Application
    Filed: October 31, 2019
    Publication date: February 27, 2020
    Inventors: Praneet Adusumilli, Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10566454
    Abstract: Self-aligned contacts of a semiconductor device are fabricated by forming a metal gate structure on a portion of a semiconductor layer of a substrate. The metal gate structure contacts inner sidewalls of a gate spacer. A second sacrificial epitaxial layer is formed on a first sacrificial epitaxial layer. The first sacrificial epitaxial layer is adjacent to the gate spacer and is formed on source/drain regions of the semiconductor layer. The first and second sacrificial epitaxial layers are recessed. The recessing exposes at least a portion of the source/drain regions. A first dielectric layer is formed on the exposed portions of the source/drain regions, and over the gate spacer and metal gate structure. At least one cavity within the first dielectric layer is formed above at least one of the exposed portions of source/drain regions. At least one metal contact is formed within the at least one cavity.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: February 18, 2020
    Assignee: International Business Machines Corporation
    Inventors: Hong He, Chiahsun Tseng, Chun-chen Yeh, Yunpeng Yin
  • Patent number: 10566442
    Abstract: Embodiments are directed to a method and resulting structures for a semiconductor device having reduced parasitic capacitance. A semiconductor fin is formed on a substrate. A first bottom spacer is formed on a surface of the substrate and a sidewall of the semiconductor fin. A sacrificial spacer is formed over a channel region of the semiconductor fin and a portion of the first bottom spacer. A second bottom spacer is formed on a surface of the first bottom spacer and adjacent to the sacrificial spacer. The sacrificial spacer is removed and a conductive gate is formed over the channel region of the semiconductor fin.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: February 18, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10566443
    Abstract: A substrate structure having a set of nanosheet layers and a set of sacrificial layers stacked upon a substrate is received and a dummy gate is formed upon the nanosheet layers and the sacrificial layers. A portion of a subset of the set of sacrificial layers and a subset of the set of nanosheet layers is etched. A portion of a subset of the subset of sacrificial layers is etched to create divots within the sacrificial layers. A divot fill layer is deposited. The divot fill layer is etched to form an inner spacer between the nanosheet layers. A source/drain region is formed adjacent to the nanosheet layers and the divots. A remaining portion of the subset of the sacrificial layers is removed. The subset of the nanosheet layers is etched to a desired channel thickness producing faceted surfaces between the subset of nanosheet layers and the inner spacer.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: February 18, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Nicolas Loubet, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh