Patents by Inventor Chun-Li Liu

Chun-Li Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170309617
    Abstract: In one embodiment, a cascode rectifier structure includes a group III-V semiconductor structure includes a heterostructure disposed on a semiconductor substrate. A first current carrying electrode and a second current carrying electrode are disposed adjacent a major surface of the heterostructure and a control electrode is disposed between the first and second current carrying electrode. A rectifier device is integrated with the group III-V semiconductor structure and is electrically connected to the first current carrying electrode and to a third electrode. The control electrode is further electrically connected to the semiconductor substrate and the second current path is generally perpendicular to a primary current path between the first and second current carrying electrodes. The cascode rectifier structure is configured as a two terminal device.
    Type: Application
    Filed: July 12, 2017
    Publication date: October 26, 2017
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Balaji PADMANABHAN, Prasad VENKATRAMAN, Zia HOSSAIN, Chun-Li LIU, Woochul JEON, Jason MCDONALD
  • Patent number: 9799646
    Abstract: In accordance with an embodiment, semiconductor component includes a compound semiconductor material based semiconductor device coupled to a silicon based semiconductor device and a protection element, wherein the silicon based semiconductor device is a transistor. The protection element is coupled in parallel across the silicon based semiconductor device and may be a resistor, a diode, or a transistor. In accordance with another embodiment, the silicon based semiconductor device is a diode. The compound semiconductor material may be shorted to a source of potential such as, for example, ground, with a shorting element.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: October 24, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Chun-Li Liu, Ali Salih
  • Patent number: 9780019
    Abstract: A semiconductor component includes a support having a lead integrally formed thereto. An insulated metal substrate is mounted to a surface of the support and a semiconductor chip is mounted to the insulated metal substrate. A III-N based semiconductor chip is mounted to the insulated metal substrate, where the III-N based semiconductor chip has a gate bond pad, a drain bond pad, and a source bond pad. A silicon based semiconductor chip is mounted to the III-N based semiconductor chip. In accordance with an embodiment the silicon based semiconductor chip includes a device having a gate bond pad, a drain bond pad, and a source bond pad. The drain bond pad of the III-N based semiconductor chip may be bonded to the substrate or to a lead. In accordance with another embodiment, the silicon based semiconductor chip is a diode.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: October 3, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Chun-Li Liu, Ali Salih, Balaji Padmanabhan, Mingjiao Liu
  • Patent number: 9773895
    Abstract: A half-bridge circuit can include a high-side HEMT, a high-side switch transistor, a low-side HEMT, and a low-side switch transistor. The die substrates of the HEMTs can be coupled to the sources of their corresponding switch transistors. In another aspect, a packaged electronic device for a half-bridge circuit can have a design that can use shorter connectors that help to reduce parasitic inductance and resistance. In a further aspect, a packaged electronic device for a half-bridge circuit can include more than one connection along the bottom of the package allows less lead connections along the periphery of the packaged electronic device and can allow for a smaller package.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: September 26, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Balaji Padmanabhan, Prasad Venkatraman, Peter Moens, Mihir Mudholkar, Joe Fulton, Philip Celaya, Stephen St. Germain, Chun-Li Liu, Jason McDonald, Alexander Young, Ali Salih
  • Patent number: 9754931
    Abstract: A circuit can include a transistor coupled to a resistor or a diode. In an embodiment, the circuit can include a pair of transistors arranged in a cascode configuration, and each of the transistors can have a corresponding component connected in parallel. In a particular embodiment, the components can be resistors, and in another particular, embodiment, the components can be diodes. The circuit can have less on-state resistance as compared to a circuit in which only one of the components is used, and reduces the off-state voltage on the gate of a high-side transistor. An integrated circuit can include a high electron mobility transistor structure and a resistor, a diode, a pair of resistors, or a pair of diodes.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: September 5, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Woochul Jeon, Joe Fulton, Chun-Li Liu
  • Patent number: 9748224
    Abstract: In one embodiment, a group III-V transistor structure includes a heterostructure disposed on a semiconductor substrate. A first current carrying electrode and a second current carrying electrode are disposed adjacent a major surface of the heterostructure and a control electrode is disposed between the first and second current carrying electrode. A clamping device is integrated with the group III-V transistor structure and is electrically connected to the first current carrying electrode a third electrode to provide a secondary current path during, for example, an electrical stress event.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 29, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Balaji Padmanabhan, Prasad Venkatraman, Zia Hossain, Chun-Li Liu, Jason McDonald, Ali Salih, Alexander Young
  • Patent number: 9741711
    Abstract: In one embodiment, a cascode rectifier structure includes a group III-V semiconductor structure includes a heterostructure disposed on a semiconductor substrate. A first current carrying electrode and a second current carrying electrode are disposed adjacent a major surface of the heterostructure and a control electrode is disposed between the first and second current carrying electrode. A rectifier device is integrated with the group III-V semiconductor structure and is electrically connected to the first current carrying electrode and to a third electrode. The control electrode is further electrically connected to the semiconductor substrate and the second current path is generally perpendicular to a primary current path between the first and second current carrying electrodes.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 22, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Balaji Padmanabhan, Prasad Venkatraman, Zia Hossain, Chun-Li Liu, Woochul Jeon, Jason McDonald
  • Patent number: 9735095
    Abstract: In accordance with an embodiment, a semiconductor component includes a support having first and second device receiving structures. A semiconductor device configured from a III-N semiconductor material is coupled to the support, wherein the semiconductor device has opposing surfaces. A first bond pad extends from a first portion of the first surface, a second bond pad extends from a second portion of the first surface, and a third bond pad extends from a third portion of the first surface. The first bond pad is coupled to the first device receiving portion, the drain bond pad is coupled to the second device receiving portion, and the third bond pad is coupled to the third lead. In accordance with another embodiment, a method includes coupling a semiconductor chip comprising a III-N semiconductor substrate material to a support.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: August 15, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Balaji Padmanabhan, Prasad Venkatraman, Ali Salih, Chun-Li Liu
  • Publication number: 20170221752
    Abstract: In accordance with an embodiment, a semiconductor component includes a plurality of layers of compound semiconductor material over a body of semiconductor material and first and second filled trenches extending into the plurality of layers of compound semiconductor material. The first trench has first and second sidewalls and a floor and a first dielectric liner over the first and second sidewalls and the second trench has first and second sidewalls and a floor and second dielectric liner over the first and second sidewalls of the second trench.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 3, 2017
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Chun-Li Liu, Balaji Padmanabhan, Ali Salih, Peter Moens
  • Patent number: 9673311
    Abstract: An electronic device can include a HEMT including at least two channel layers. In an embodiment, a lower semiconductor layer overlies a lower channel layer, wherein the lower semiconductor layer has an aluminum content that is at least 10% of a total metal content of the lower semiconductor layer. An upper semiconductor layer overlies the upper channel layer, wherein the upper semiconductor layer has an aluminum content that is greater as compared to the lower semiconductor layer. In another embodiment, an electronic device can include stepped source and drain electrodes, so that lower contact resistance can be achieved. In a further embodiment, an absolute value of a difference between pinch-off or threshold voltages between different channel layers is greater than 1 V and allows current to be turned on or turned off for a channel layer without affecting another channel layer.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: June 6, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Peter Moens, Jia Guo, Ali Salih, Chun-Li Liu
  • Patent number: 9660062
    Abstract: An electronic device can include a bidirectional HEMT. In an aspect, a packaged electronic device can include the bidirectional HEMT can be part of a die having a die substrate connection that is configured to be at a fixed voltage, electrically connected to drain/source or source/drain depending on current flow through the bidirectional HEMT, or electrically float. In another aspect, the electronic device can include Kelvin connections on both the drain/source and source/drain side of the circuit. In a further embodiment, a circuit can include the bidirectional HEMT, switch transistors, and diodes with breakdown voltages to limit voltage swings at the drain/source and source/drain of the switch transistors.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: May 23, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Balaji Padmanabhan, Prasad Venkatraman, Chun-Li Liu, Peter Moens
  • Patent number: 9627530
    Abstract: In accordance with an embodiment, a method for manufacturing a semiconductor component includes forming a first trench through a plurality of layers of compound semiconductor material. An insulating material is formed on first and second sidewalls of the first trench and first and second sidewalls of the second trench and a trench fill material is formed in the first and second trenches. In accordance with another embodiment, the semiconductor component includes a plurality of layers of compound semiconductor material over a body of semiconductor material and first and second filled trenches extending into the plurality of layers of compound semiconductor material. The first trench has first and second sidewalls and a floor and a first dielectric liner over the first and second sidewalls and the second trench has first and second sidewalls and a floor and second dielectric liner over the first and second sidewalls of the second trench.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: April 18, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Chun-Li Liu, Balaji Padmanabhan, Ali Salih, Peter Moens
  • Patent number: 9620598
    Abstract: An electronic device can transistor having a channel layer that includes a compound semiconductor material. In an embodiment, the channel layer overlies a semiconductor layer that includes a carrier barrier region and a carrier accumulation region. The charge barrier region can help to reduce the likelihood that de-trapped carriers from the channel layer will enter the charge barrier region, and the charge accumulation region can help to repel carriers in the channel layer away from the charge barrier layer. In another embodiment, a barrier layer overlies the channel layer. Embodiments described herein may help to produce lower dynamic on-resistance, lower leakage current, another beneficial effect, or any combination thereof.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: April 11, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Chun-Li Liu, Ali Salih
  • Patent number: 9620443
    Abstract: In accordance with an embodiment, a semiconductor component includes a support having a first device receiving structure, a second device receiving structure, a first lead and a second lead. A first semiconductor chip is coupled to the first device receiving structure and a second semiconductor chip is coupled to the first semiconductor chip and the second device receiving structure. The first semiconductor chip is configured from a silicon semiconductor material and has a gate bond pad, a source bond pad, and a drain bond pad, and the second semiconductor chip is configured from a gallium nitride semiconductor chip and has a gate bond pad, a source bond pad, and a drain bond pad. In accordance with another embodiment, a method for manufacturing a semiconductor component includes coupling a first semiconductor chip to a support and coupling a second semiconductor chip to the support.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: April 11, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Balaji Padmanabhan, Prasad Venkatraman, Ali Salih, Chun-Li Liu, Phillip Celaya
  • Publication number: 20170025340
    Abstract: In accordance with an embodiment, a semiconductor component includes a support having a first device receiving structure, a second device receiving structure, a first lead and a second lead. A first semiconductor chip is coupled to the first device receiving structure and a second semiconductor chip is coupled to the first semiconductor chip and the second device receiving structure. The first semiconductor chip is configured from a silicon semiconductor material and has a gate bond pad, a source bond pad, and a drain bond pad, and the second semiconductor chip is configured from a gallium nitride semiconductor chip and has a gate bond pad, a source bond pad, and a drain bond pad. In accordance with another embodiment, a method for manufacturing a semiconductor component includes coupling a first semiconductor chip to a support and coupling a second semiconductor chip to the support.
    Type: Application
    Filed: July 13, 2016
    Publication date: January 26, 2017
    Applicant: Semiconductor Components Industries, LLC
    Inventors: Balaji Padmanabhan, Prasad Venkatraman, Ali Salih, Chun-Li Liu, Phillip Celaya
  • Publication number: 20170025405
    Abstract: A circuit can include a transistor coupled to a resistor or a diode. In an embodiment, the circuit can include a pair of transistors arranged in a cascode configuration, and each of the transistors can have a corresponding component connected in parallel. In a particular embodiment, the components can be resistors, and in another particular, embodiment, the components can be diodes. The circuit can have less on-state resistance as compared to a circuit in which only one of the components is used, and reduces the off-state voltage on the gate of a high-side transistor. An integrated circuit can include a high electron mobility transistor structure and a resistor, a diode, a pair of resistors, or a pair of diodes.
    Type: Application
    Filed: July 24, 2015
    Publication date: January 26, 2017
    Applicant: Semiconductor Components Industries, LLC
    Inventors: Woochul JEON, Joe FULTON, Chun-Li LIU
  • Publication number: 20170025328
    Abstract: In accordance with an embodiment, a semiconductor component includes a support having a side in which a device receiving structure and an interconnect structure are formed and a side from which a plurality of leads extends. A semiconductor device having a control terminal and first and second current carrying terminals and configured from a III-N semiconductor material is mounted to the device receiving structure. The control terminal of the first electrical interconnect is coupled to a first lead by a first electrical interconnect. A second electrical interconnect is coupled between the first current carrying terminal of the semiconductor device and a second lead. The second current carrying terminal of the first semiconductor device is coupled to the device receiving structure or to the interconnect structure.
    Type: Application
    Filed: July 6, 2016
    Publication date: January 26, 2017
    Applicant: Semiconductor Components Industries, LLC
    Inventors: Chun-Li Liu, Ali Salih, Mingjiao Liu
  • Publication number: 20170025407
    Abstract: In accordance with an embodiment, semiconductor component includes a compound semiconductor material based semiconductor device coupled to a silicon based semiconductor device and a protection element, wherein the silicon based semiconductor device is a transistor. The protection element is coupled in parallel across the silicon based semiconductor device and may be a resistor, a diode, or a transistor. In accordance with another embodiment, the silicon based semiconductor device is a diode. The compound semiconductor material may be shorted to a source of potential such as, for example, ground, with a shorting element.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 26, 2017
    Applicant: Semiconductor Components Industries, LLC
    Inventors: Chun-Li Liu, Ali Salih
  • Publication number: 20170025335
    Abstract: In accordance with an embodiment, a semiconductor component is provided that includes a leadframe having a device receiving area, one or more leadframe leads and at least one insulated metal substrate bonded to a first portion of the device receiving area. A first semiconductor device is mounted to a first insulated metal substrate, the first semiconductor device configured from a III-N semiconductor material. A first electrical interconnect is coupled between the first current carrying terminal of the first semiconductor device and a second portion of the die receiving area. In accordance with another embodiment, method includes providing a first semiconductor chip comprising a III-N semiconductor substrate material and a second semiconductor chip comprising a silicon based semiconductor substrate. The first semiconductor chip is mounted on a first substrate and the second semiconductor chip on a second substrate. The first semiconductor chip is electrically coupled to the second semiconductor chip.
    Type: Application
    Filed: July 6, 2016
    Publication date: January 26, 2017
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Chun-Li Liu, Ali Salih, Balaji Padmanabhan, Mingjiao Liu
  • Publication number: 20170025339
    Abstract: A semiconductor component includes a support having a lead integrally formed thereto. An insulated metal substrate is mounted to a surface of the support and a semiconductor chip is mounted to the insulated metal substrate. A III-N based semiconductor chip is mounted to the insulated metal substrate, where the III-N based semiconductor chip has a gate bond pad, a drain bond pad, and a source bond pad. A silicon based semiconductor chip is mounted to the III-N based semiconductor chip. In accordance with an embodiment the silicon based semiconductor chip includes a device having a gate bond pad, a drain bond pad, and a source bond pad. The drain bond pad of the III-N based semiconductor chip may be bonded to the substrate or to a lead. In accordance with another embodiment, the silicon based semiconductor chip is a diode.
    Type: Application
    Filed: July 12, 2016
    Publication date: January 26, 2017
    Applicant: Semiconductor Components Industries, LLC
    Inventors: Chun-Li Liu, Ali Salih, Balaji Padmanabhan, Mingjiao Liu