Patents by Inventor Chun-Li Liu

Chun-Li Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7241647
    Abstract: A process for forming a semiconductor device. The process includes forming a template layer for forming a layer of strained silicon. In one example a layer of graded silicon germanium is formed where the germanium is at a higher concentration at the lower portion and at a lower concentration at a top portion. When subject to a condensation process, the germanium of the top portion of the layer diffuses to a remaining portion of the silicon germanium layer. Because the silicon germanium layer has a higher concentration of germanium at lower portions, germanium pile up after condensation may be reduced at the upper portion of the remaining portion of the silicon germanium layer.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: July 10, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Shawn G. Thomas, Ted R. White, Chun-Li Liu, Alexander L. Barr, Bich-Yen Nguyen, Voon-Yew Thean
  • Patent number: 7238580
    Abstract: A semiconductor fabrication process has recessed stress-inducing source/drain (SISD) structures that are formed using a multiple phase formation process. The SISD structures are semiconductor structures having a lattice constant that differs from a lattice constant of the semiconductor substrate in which the source/drain structures are recessed. The SISD structures preferably include semiconductor compound having a first element (e.g., silicon) and a second element (e.g., germanium or carbon). The SISD structure has a composition gradient wherein the percentage of the second element varies from the upper surface of the source/drain structure to a lower surface of the SISD structure. The SISD structure may include a first layer with a first composition of the semiconductor compound underlying a second layer with a second composition of the semiconductor compound. The second layer may include an impurity and have a higher percentage of the second element that the first layer.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: July 3, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Vance H. Adams, Chun-Li Liu, Matthew W. Stoker
  • Patent number: 7221006
    Abstract: A semiconductor device (101) is provided herein which comprises a substrate (103) comprising germanium. The substrate has source (107) and drain (109) regions defined therein. A barrier layer (111) comprising a first material that has a higher bandgap (Eg) than germanium is disposed at the boundary of at least one of said source and drain regions. At least one of the source and drain regions comprises germanium.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: May 22, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius Orlowski, Sinan Goktepeli, Chun-Li Liu
  • Publication number: 20070096226
    Abstract: A semiconductor device includes a substrate, a multilayered assembly of high k dielectric materials formed on the substrate, and a first conducting material formed on the upper layer of the assembly of high k dielectric materials. The multilayered high k dielectric assembly includes a lower layer, an upper layer, and a diffusion barrier layer formed between the lower and upper dielectric layers. The diffusion barrier layer has a greater affinity for oxygen than the upper and lower layers. The first conducting layer includes a conducting compound of at least a metal element and oxygen.
    Type: Application
    Filed: October 31, 2005
    Publication date: May 3, 2007
    Inventors: Chun-Li Liu, Tushar Merchant, Marius Orlowski, James Schaeffer, Matthew Stoker
  • Patent number: 7195963
    Abstract: Silicon carbon is used as a diffusion barrier to germanium so that a silicon layer can be subsequently formed without being contaminated with germanium. This is useful in separating silicon layers from silicon germanium layers in situations in which both silicon and silicon germanium are desired to be present on the same semiconductor device such as for providing different materials for optimizing carrier mobility between N and P channel transistors and for a raised source/drain of silicon in the case of a silicon germanium body.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: March 27, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Chun-Li Liu, Choh-Fei Yeap
  • Publication number: 20070026593
    Abstract: A semiconductor fabrication method includes forming a gate module overlying a substrate. Recesses are etched in the substrate using the gate module as a mask. A barrier layer is deposited over the wafer and anisotropically etched to form barrier “curtains” on sidewalls of the source/drain recesses. A metal layer is deposited wherein the metal layer contacts a semiconductor within the recess. The wafer is annealed to form a silicide selectively. The diffusivity of the metal with respect to the barrier structure material is an order of magnitude less than the diffusivity of the metal with respect to the semiconductor material. The etched recesses may include re-entrant sidewalls. The metal layer may be a nickel layer and the barrier layer may be a titanium nitride layer. Silicon or silicon germanium epitaxial structures may be formed in the recesses overlying the semiconductor substrate.
    Type: Application
    Filed: July 29, 2005
    Publication date: February 1, 2007
    Inventors: Dharmesh Jawarani, Chun-Li Liu, Marius Orlowski
  • Patent number: 7166897
    Abstract: A method and apparatus is presented that provides performance enhancement in a semiconductor device. In one embodiment, a first current region (64, 76, 23), a channel region and a second current region (75, 33, 66) are adjacent each other. The second current region (75, 33, 66) has a content of a first element of an alloy greater than a content of the first element in the first current region (64, 76, 23), wherein the second current region (75, 33, 66) has a content of the first element greater than a content of the first element in the channel region, the alloy further comprises a second element, the first element has a first valence number, and the second element has a second valence number. Furthermore, the sum of the first valence number and the second valence number is eight.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: January 23, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Vance H. Adams, Chun-Li Liu, Brian A. Winstead
  • Publication number: 20060237746
    Abstract: A semiconductor device (101) is provided herein which comprises a substrate (103) comprising germanium. The substrate has source (107) and drain (109) regions defined therein. A barrier layer (111) comprising a first material that has a higher bandgap (Eg) than germanium is disposed at the boundary of at least one of said source and drain regions. At least one of the source and drain regions comprises germanium.
    Type: Application
    Filed: April 20, 2005
    Publication date: October 26, 2006
    Inventors: Marius Orlowski, Sinan Goktepeli, Chun-Li Liu
  • Publication number: 20060166492
    Abstract: A semiconductor fabrication process has recessed stress-inducing source/drain (SISD) structures that are formed using a multiple phase formation process. The SISD structures are semiconductor structures having a lattice constant that differs from a lattice constant of the semiconductor substrate in which the source/drain structures are recessed. The SISD structures preferably include semiconductor compound having a first element (e.g., silicon) and a second element (e.g., germanium or carbon). The SISD structure has a composition gradient wherein the percentage of the second element varies from the upper surface of the source/drain structure to a lower surface of the SISD structure. The SISD structure may include a first layer with a first composition of the semiconductor compound underlying a second layer with a second composition of the semiconductor compound. The second layer may include an impurity and have a higher percentage of the second element that the first layer.
    Type: Application
    Filed: January 26, 2005
    Publication date: July 27, 2006
    Inventors: Marius Orlowski, Vance Adams, Chun-Li Liu, Matthew Stoker
  • Patent number: 7056778
    Abstract: A process for forming strained semiconductor layers. The process include flowing a chlorine bearing gas (e.g. hydrogen chloride, chlorine, carbon tetrachloride, and trichloroethane) over the wafer while heating the wafer. In one example, the chorine bearing gas is flowed during a condensation process on a semiconductor layer that is used as a template layer for forming a strain semiconductor layer (e.g. strain silicon). In other examples, the chlorine bearing gas is flowed during a post bake of the wafer after the condensation operation.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: June 6, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chun-Li Liu, Mariam G. Sadaka, Alexander L. Barr, Bich-Yen Nguyen, Voon-Yew Thean, Shawn G. Thomas, Ted R. White, Qianghua Xie
  • Patent number: 7029980
    Abstract: A vacancy injecting process for injecting vacancies in template layer material of an SOI substrate. The template layer material has a crystalline structure that includes, in some embodiments, both germanium and silicon atoms. A strained silicon layer is then epitaxially grown on the template layer material with the beneficial effects that straining has on electron and hole mobility. The vacancy injecting process is performed to inject vacancies and germanium atoms into the crystalline structure wherein germanium atoms recombine with the vacancies. One embodiment, a nitridation process is performed to grow a nitride layer on the template layer material and consume silicon in a way that injects vacancies in the crystalline structure while also allowing germanium atoms to recombine with the vacancies.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: April 18, 2006
    Assignee: Freescale Semiconductor Inc.
    Inventors: Chun-Li Liu, Marius K. Orlowski, Matthew W. Stoker, Philip J. Tobin, Mariam G. Sadaka, Alexander L. Barr, Bich-Yen Nguyen, Voon-Yew Thean, Shawn G. Thomas, Ted R. White
  • Publication number: 20060043498
    Abstract: A method and apparatus is presented that provides performance enhancement in a semiconductor device. In one embodiment, a first current region (64, 76, 23), a channel region and a second current region (75, 33, 66) are adjacent each other. The second current region (75, 33, 66) has a content of a first element of an alloy greater than a content of the first element in the first current region (64, 76, 23), wherein the second current region (75, 33, 66) has a content of the first element greater than a content of the first element in the channel region, the alloy further comprises a second element, the first element has a first valence number, and the second element has a second valence number. Furthermore, the sum of the first valence number and the second valence number is eight.
    Type: Application
    Filed: August 24, 2004
    Publication date: March 2, 2006
    Inventors: Marius Orlowski, Vance Adams, Chun-Li Liu, Brian Winstead
  • Publication number: 20060040433
    Abstract: A process for forming a semiconductor device. The process includes forming a template layer for forming a layer of strained silicon. In one example a layer of graded silicon germanium is formed where the germanium is at a higher concentration at the lower portion and at a lower concentration at a top portion. When subject to a condensation process, the germanium of the top portion of the layer diffuses to a remaining portion of the silicon germanium layer. Because the silicon germanium layer has a higher concentration of germanium at lower portions, germanium pile up after condensation may be reduced at the upper portion of the remaining portion of the silicon germanium layer.
    Type: Application
    Filed: August 17, 2004
    Publication date: February 23, 2006
    Inventors: Mariam Sadaka, Shawn Thomas, Ted White, Chun-Li Liu, Alexander Barr, Bich-Yen Nguyen, Voon-Yew Thean
  • Publication number: 20050260807
    Abstract: Silicon carbon is used as a diffusion barrier to germanium so that a silicon layer can be subsequently formed without being contaminated with germanium. This is useful in separating silicon layers from silicon germanium layers in situations in which both silicon and silicon germanium are desired to be present on the same semiconductor device such as for providing different materials for optimizing carrier mobility between N and P channel transistors and for a raised source/drain of silicon in the case of a silicon germanium body.
    Type: Application
    Filed: May 21, 2004
    Publication date: November 24, 2005
    Inventors: Marius Orlowski, Chun-Li Liu, Choh-Fei Yeap
  • Publication number: 20050070057
    Abstract: A process for forming strained semiconductor layers. The process include flowing a chlorine bearing gas (e.g. hydrogen chloride, chlorine, carbon tetrachloride, and trichloroethane) over the wafer while heating the wafer. In one example, the chorine bearing gas is flowed during a condensation process on a semiconductor layer that is used as a template layer for forming a strain semiconductor layer (e.g. strain silicon). In other examples, the chlorine bearing gas is flowed during a post bake of the wafer after the condensation operation.
    Type: Application
    Filed: August 17, 2004
    Publication date: March 31, 2005
    Inventors: Chun-Li Liu, Mariam Sadaka, Alexander Barr, Bich-Yen Nguyen, Voon-Yew Thean, Shawn Thomas, Ted White, Qianghua Xie
  • Publication number: 20050070056
    Abstract: A vacancy injecting process for injecting vacancies in template layer material of an SOI substrate. The template layer material has a crystalline structure that includes, in some embodiments, both germanium and silicon atoms. A strained silicon layer is then epitaxially grown on the template layer material with the beneficial effects that straining has on electron and hole mobility. The vacancy injecting process is performed to inject vacancies and germanium atoms into the crystalline structure wherein germanium atoms recombine with the vacancies. One embodiment, a nitridation process is performed to grow a nitride layer on the template layer material and consume silicon in a way that injects vacancies in the crystalline structure while also allowing germanium atoms to recombine with the vacancies.
    Type: Application
    Filed: September 25, 2003
    Publication date: March 31, 2005
    Inventors: Chun-Li Liu, Marius Orlowski, Matthew Stoker, Philip Tobin, Mariam Sadaka, Alexander Barr, Bich-Yen Nguyen, Voon-Yew Thean, Shawn Thomas, Ted White
  • Patent number: 6831350
    Abstract: A semiconductor structure includes a substrate comprising a first relaxed semiconductor material with a first lattice constant. A semiconductor device layer overlies the substrate, wherein the semiconductor device layer includes a second relaxed semiconductor material with a second lattice constant different from the first lattice constant. In addition, a dielectric layer is interposed between the substrate and the semiconductor device layer, wherein the dielectric layer includes a programmed transition zone disposed within the dielectric layer for transitioning between the first lattice constant and the second lattice constant. The programmed transition zone includes a plurality of layers, adjoining ones of the plurality of layers having different lattice constants with one of the adjoining ones having a first thickness exceeding a first critical thickness required to form defects and another of the adjoining ones having a second thickness not exceeding a second critical thickness.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: December 14, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chun-Li Liu, Alexander L. Barr, John M. Grant, Bich-Yen Nguyen, Marius K. Orlowski, Tab A. Stephens, Ted R. White, Shawn G. Thomas
  • Patent number: 6717226
    Abstract: A transistor device has a gate dielectric with at least two layers in which one is hafnium oxide and the other is a metal oxide different from hafnium oxide. Both the hafnium oxide and the metal oxide also have a high dielectric constant. The metal oxide provides an interface with the hafnium oxide that operates as a barrier for contaminant penetration. Of particular concern is boron penetration from a polysilicon gate through hafnium oxide to a semiconductor substrate. The hafnium oxide will often have grain boundaries in its crystalline structure that provide a path for boron atoms. The metal oxide has a different structure than that of the hafnium oxide so that those paths for boron in the hafnium oxide are blocked by the metal oxide. Thus, a high dielectric constant is provided while preventing boron penetration from the gate electrode to the substrate.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: April 6, 2004
    Assignee: Motorola, Inc.
    Inventors: Rama I. Hegde, Joe Mogab, Philip J. Tobin, Hsing H. Tseng, Chun-Li Liu, Leonard J. Borucki, Tushar P. Merchant, Christopher C. Hobbs, David C. Gilmer
  • Publication number: 20030176049
    Abstract: A transistor device has a gate dielectric with at least two layers in which one is hafnium oxide and the other is a metal oxide different from hafnium oxide. Both the hafnium oxide and the metal oxide also have a high dielectric constant. The metal oxide provides an interface with the hafnium oxide that operates as a barrier for contaminant penetration. Of particular concern is boron penetration from a polysilicon gate through hafnium oxide to a semiconductor substrate. The hafnium oxide will often have grain boundaries in its crystalline structure that provide a path for boron atoms. The metal oxide has a different structure than that of the hafnium oxide so that those paths for boron in the hafnium oxide are blocked by the metal oxide. Thus, a high dielectric constant is provided while preventing boron penetration from the gate electrode to the substrate.
    Type: Application
    Filed: March 15, 2002
    Publication date: September 18, 2003
    Inventors: Rama I. Hegde, Joe Mogab, Philip J. Tobin, Hsing H. Tseng, Chun-Li Liu, Leonard J. Borucki, Tushar P. Merchant, Christopher C. Hobbs, David C. Gilmer
  • Patent number: 6518070
    Abstract: A process for forming a capacitor with a high-k dielectric or ferroelectric layer within a semiconductor device is used to reduce the likelihood of oxidation or materials interactions between that layer and an underlying layer. A first electrode layer includes atoms that form along grain boundaries within the first electrode layer to reduce the oxidation of a conductive plug or undesired materials interactions.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: February 11, 2003
    Assignee: Motorola, Inc.
    Inventors: Prasad V. Alluri, Mark Victor Raymond, Sucharita Madhukar, Roland R. Stumpf, Chun-Li Liu, Clarence J. Tracy