Patents by Inventor Chun-Wen Cheng

Chun-Wen Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9822000
    Abstract: The present disclosure relates an integrated chip having one or more MEMS devices. In some embodiments, the integrated chip has a carrier substrate with one or more cavities disposed within a first side of the carrier substrate. A dielectric layer is disposed between the first side of the carrier substrate and a first side of a micro-electromechanical system (MEMS) substrate. The dielectric layer has sidewalls that are laterally set back from sidewalls of openings extending through the MEMs substrate to the one or more cavities. A bonding structure, including an intermetallic compound having a plurality of metallic elements, abuts a second side of the MEMS substrate and is electrically connected to a metal interconnect layer within a dielectric structure disposed over a CMOS substrate.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: November 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wen Cheng, Chia-Hua Chu, Jung-Huei Peng
  • Patent number: 9815685
    Abstract: A semiconductor structure includes a first device and a second device. The first device includes a plate including a plurality of apertures, a membrane disposed opposite to the plate and including a plurality of corrugations facing the plurality of apertures, and a conductive plug extending from the plate through the membrane. The second device includes a substrate and a bond pad disposed over the substrate, wherein the conductive plug is bonded with the bond pad to integrate the first device with the second device, and the plate is an epitaxial (EPI) silicon layer or a silicon-on-insulator (SOI) substrate.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: November 14, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yi-Hsien Chang, Chun-Wen Cheng, Chun-Ren Cheng, Shih-Wei Lin, Wei-Cheng Shen
  • Publication number: 20170322177
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 9, 2017
    Inventors: Alexander Kalnitsky, Yi-Shao Liu, Kai-Chih Liang, Chia-Hua Chu, Chun-Ren Cheng, Chun-Wen Cheng
  • Publication number: 20170315084
    Abstract: A device includes a biosensor, a sensing circuit electrically connected to the biosensor, a quantizer electrically connected to the sensing circuit, a digital filter electrically connected to the quantizer, a selective window electrically connected to the digital filter, and a decision unit electrically connected to the selective window.
    Type: Application
    Filed: July 10, 2017
    Publication date: November 2, 2017
    Inventors: Jui-Cheng Huang, Yi-Shao Liu, Chun-Wen Cheng, Tung-Tsun Chen, Chin-Hua Wen
  • Publication number: 20170315085
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) device and methods of fabricating a BioFET and a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a gate structure disposed on a first surface of a substrate and an interface layer formed on a second surface of the substrate. The substrate is thinned from the second surface to expose a channel region before forming the interface layer.
    Type: Application
    Filed: July 14, 2017
    Publication date: November 2, 2017
    Inventors: Yi-Shao LIU, Chun-Ren CHENG, Ching-Ray CHEN, Yi-Hsien CHANG, Fei-Lung LAI, Chun-Wen CHENG
  • Publication number: 20170313581
    Abstract: A method of making a micro electromechanical system (MEMS) package includes patterning a substrate to form a MEMS section. The method further includes bonding a carrier to a surface of the substrate. The carrier is free of active devices. The carrier includes a carrier bond pad on a surface of the carrier opposite the MEMS section. The carrier bond pad is electrically connected to the MEMS section. The method further includes bonding a wafer bond pad of an active circuit wafer to the carrier bond pad. The bonding of the wafer bond pad to the carrier bond pad includes re-graining the wafer bond pad to form at least one grain boundary extending from the wafer bond pad to the carrier bond pad.
    Type: Application
    Filed: July 7, 2017
    Publication date: November 2, 2017
    Inventors: Chun-wen CHENG, Hung-Chia TSAI, Lan-Lin CHAO, Yuan-Chih HSIEH, Ping-Yin LIU
  • Patent number: 9797976
    Abstract: A device includes a first biosensor of a biosensor array; a second biosensor of a biosensor array; a readout circuit electrically connected to the biosensor array; a decoder electrically connected to the biosensor array; a voltage generator electrically connected to the biosensor array; and a decision system electrically connected to the voltage generator and the readout circuit.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: October 24, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Chin-Hua Wen, Jui-Cheng Huang, Yi-Shao Liu, Chun-Wen Cheng, Tung-Tsun Chen
  • Patent number: 9796582
    Abstract: A method for integrating complementary metal-oxide-semiconductor (CMOS) devices with a microelectromechanical systems (MEMS) device using a flat surface above a sacrificial layer is provided. In some embodiments, a back-end-of-line (BEOL) interconnect structure is formed covering a semiconductor substrate, where the BEOL interconnect structure comprises a first dielectric region. A sacrificial layer is formed over the first dielectric region, and a second dielectric region is formed covering the sacrificial layer and the first dielectric region. A planarization is performed into an upper surface of the second dielectric region to planarize the upper surface. A MEMS structure is formed on the planar upper surface of the second dielectric region. A cavity etch is performed into the sacrificial layer, through the MEMS structure, to remove the sacrificial layer and to form a cavity in place of the sacrificial layer. An integrated circuit (IC) resulting from the method is also provided.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: October 24, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wen Cheng, Chia-Hua Chu
  • Patent number: 9791406
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: October 17, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Alexander Kalnitsky, Yi-Shao Liu, Kai-Chih Liang, Chia-Hua Chu, Chun-Ren Cheng, Chun-Wen Cheng
  • Publication number: 20170283250
    Abstract: The present disclosure relates to a microelectromechanical systems (MEMS) package having two MEMS devices with different pressures, and an associated method of formation. In some embodiments, the (MEMS) package includes a device substrate and a cap substrate bonded together. The device substrate includes a first trench and a second trench. A first MEMS device is disposed over the first trench and a second MEMS device is disposed over the second trench. A first stopper is raised from a first trench bottom surface of the first trench but below a top surface of the device substrate and a second stopper is raised from a second trench bottom surface of the second trench but below the top surface of the device substrate. A first depth of the first trench is greater than a second depth of the second trench.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 5, 2017
    Inventors: Yu-Chia Liu, Chia-Hua Chu, Chun-Wen Cheng, Kuei-Sung Chang, Jung-Huei Peng
  • Patent number: 9776856
    Abstract: A vacuum sealed MEMS and CMOS package and a process for making the same may include a capping wafer having a surface with a plurality of first cavities, a first device having a first surface with a second plurality of second cavities, a hermetic seal between the first surface of the first device and the surface of the capping wafer, and a second device having a first surface bonded to a second surface of the first device. The second device is a CMOS device with conductive through vias connecting the first device to a second surface of the second device, and conductive bumps on the second surface of the second device. Conductive bumps connect to the conductive through vias and wherein a plurality of conductive bumps connect to the second device. The hermetic seal forms a plurality of micro chambers between the capping wafer and the first device.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 3, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wen Cheng, Yi-Chuan Teng, Hung-Chia Tsai, Chia-Hua Chu
  • Publication number: 20170260042
    Abstract: Representative methods for sealing MEMS devices include depositing insulating material over a substrate, forming conductive vias in a first set of layers of the insulating material, and forming metal structures in a second set of layers of the insulating material. The first and second sets of layers are interleaved in alternation. A dummy insulating layer is provided as an upper-most layer of the first set of layers. Portions of the first and second set of layers are etched to form void regions in the insulating material. A conductive pad is formed on and in a top surface of the insulating material. The void regions are sealed with an encapsulating structure. At least a portion of the encapsulating structure is laterally adjacent the dummy insulating layer, and above a top surface of the conductive pad. An etch is performed to remove at least a portion of the dummy insulating layer.
    Type: Application
    Filed: March 10, 2016
    Publication date: September 14, 2017
    Inventors: Yu-Chia Liu, Chia-Hua Chu, Chun-Wen Cheng
  • Publication number: 20170248536
    Abstract: A micro-electro mechanical system (MEMS) humidity sensor includes a first substrate, a second substrate and a sensing structure. The second substrate is substantially parallel to the first substrate. The sensing structure is between the first substrate and the second substrate, and bonded to a portion of the first substrate and a portion of the second substrate, in which the second substrate includes a conductive layer facing the sensing structure, and a first space between the first substrate and the sensing structure is communicated with or isolated from outside, and a second space between the conductive layer and the sensing structure is communicated with an atmosphere, and the sensing structure, the second space and the conductive layer constitute a capacitor configured to measure permittivity of the atmosphere, and humidity of the atmosphere is derived from the permittivity of the atmosphere, pressure of the atmosphere and temperature.
    Type: Application
    Filed: February 25, 2016
    Publication date: August 31, 2017
    Inventors: Tung-Tsun CHEN, Chia-Hua CHU, Jui-Cheng HUANG, Chun-Wen CHENG, Cheng-Hsiang HSIEH
  • Publication number: 20170247251
    Abstract: A micro-electromechanical systems (MEMS) device includes a MEMS substrate having a first opening, a second opening, and a membrane layer comprising a first membrane disposed over the first opening and a second membrane disposed over the second opening. The MEMS device also includes a carrier substrate bonded to a first side of the MEMS substrate, the carrier substrate having a first cavity exposing the first membrane and a second cavity exposing the second membrane, and a cap substrate bonded to a second side of the MEMS substrate. The cap substrate has a third cavity connected to the first opening and a fourth cavity connected to the second opening. The first membrane, the first cavity, and the third cavity are part of a pressure sensor. The fourth cavity extends completely through the cap substrate. The second membrane, the second cavity, and the fourth cavity are part of a microphone.
    Type: Application
    Filed: May 15, 2017
    Publication date: August 31, 2017
    Inventors: Chia-Hua Chu, Chun-Wen Cheng
  • Patent number: 9725310
    Abstract: A micro electromechanical system (MEMS) device includes a MEMS section attached to a substrate, and a cap bonded to a first surface of the substrate. The MEMS device further includes a carrier bonded to a second surface of the substrate opposite the first surface, wherein the carrier is free of active devices, and the cap and the carrier define a vacuum region surrounding the MEMS section. The MEMS device further includes a bond pad on a surface of the carrier opposite the MEMS section, wherein the bond pad is electrically connected to the MEMS section.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 8, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-wen Cheng, Hung-Chia Tsai, Lan-Lin Chao, Yuan-Chih Hsieh, Ping-Yin Liu
  • Patent number: 9725301
    Abstract: A structure and a formation method of a micro-electro mechanical system (MEMS) device are provided. The MEMS device includes a cap substrate and a MEMS substrate bonded with the cap substrate. The MEMS substrate includes a first movable element and a second movable element. The MEMS device also includes a first enclosed space surrounded by the MEMS substrate and the cap substrate, and the first movable element is in the first enclosed space. The MEMS device further includes a second enclosed space surrounded by the MEMS substrate and the cap substrate, and the second movable element is in the second enclosed space. In addition, the MEMS device includes a pressure-changing layer in the first enclosed space.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: August 8, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Hua Chu, Chun-Wen Cheng, Shang-Ying Tsai, Chin-Wei Liang
  • Patent number: 9725299
    Abstract: A device includes a substrate, a first structure, a second structure, a third structure and a bumper. The first structure is over the substrate. The second structure is over the substrate, wherein the second structure has a first end coupled to the first structure. The third structure is over the substrate, wherein the third structure is coupled to a second end of the second structure. The bumper is between the substrate and the third structure, wherein the bumper is a multi-layered bumper including a first conductive feature, a dielectric feature and a second conductive feature. The dielectric feature is over the first conductive feature. The second conductive feature is over the dielectric feature and electrically connected to the first conductive feature.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: August 8, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun-Wen Cheng, Jiou-Kang Lee
  • Publication number: 20170210614
    Abstract: A device includes a substrate, a first structure, a second structure, a third structure and a bumper. The first structure is over the substrate. The second structure is over the substrate, wherein the second structure has a first end coupled to the first structure. The third structure is over the substrate, wherein the third structure is coupled to a second end of the second structure. The bumper is between the substrate and the third structure, wherein the bumper is a multi-layered bumper including a first conductive feature, a dielectric feature and a second conductive feature. The dielectric feature is over the first conductive feature. The second conductive feature is over the dielectric feature and electrically connected to the first conductive feature.
    Type: Application
    Filed: January 27, 2016
    Publication date: July 27, 2017
    Inventors: CHUN-WEN CHENG, JIOU-KANG LEE
  • Publication number: 20170205371
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity. An amplification factor of the BioFET device may be provided by a difference in capacitances associated with the gate structure on the first surface and with the interface layer formed on the second surface.
    Type: Application
    Filed: February 2, 2017
    Publication date: July 20, 2017
    Inventors: Yi-Shao LIU, Rashid Bashir, Fel-Lung Lai, Chun-wen Cheng
  • Patent number: 9709525
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) device and methods of fabricating a BioFET and a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a gate structure disposed on a first surface of a substrate and an interface layer formed on a second surface of the substrate. The substrate is thinned from the second surface to expose a channel region before forming the interface layer.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: July 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Shao Liu, Chun-Ren Cheng, Ching-Ray Chen, Yi-Hsien Chang, Fei-Lung Lai, Chun-Wen Cheng