Patents by Inventor Chun Wen

Chun Wen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11895734
    Abstract: Techniques for converged incident management workflows between private and public safety are provided. A workflow server connected to a network and associated with an enterprise detects that a workflow has been initiated. The workflow includes an action to request a public safety response. A workflow identifier for the workflow that has been initiated is sent to a public safety network. Information associated with the workflow that has been initiated is sent to the public safety network. An indication of capabilities of the public safety response is received. The workflow server creates at least one of a trigger node and an action node associated with the indication of capabilities of the public safety response. At least one existing workflow within the workflow server is modified to include the at least one of the trigger node an action node associated with the indication of capabilities of the public safety response.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: February 6, 2024
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Chun Wen Ooi, Wooi Ping Teoh
  • Publication number: 20240036294
    Abstract: An optical device includes a substrate, a first electrode, a second electrode, and a first lens. The first electrode and the second electrode are over the substrate and configured to generate a first electric field. The first lens is between the first electrode and the second electrode and has a focal length that varies in response to the first electric field applied to the first lens.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 1, 2024
    Inventors: WEI-LIN CHEN, CHING-CHUNG SU, JUNG-HUEI PENG, CHUN-WEN CHENG, CHUN-HAO CHOU, KUO-CHENG LEE
  • Publication number: 20240039065
    Abstract: A battery module including a battery frame, a plurality of locking structures, a plurality of battery units, and a plurality of lug structures is provided. The battery frame is provided with an accommodating space. The battery frame includes a first portion extending along a first direction and a second portion extending along a second direction. The first direction is different from the second direction. The locking structures are disposed on the battery frame. At least one of the plurality of locking structures is disposed on an outer side of each of the first portion and the second portion. The battery units are disposed in the accommodating space. Each of the lug structures includes a lock portion configured to detachably engage with one of the locking structures.
    Type: Application
    Filed: February 21, 2023
    Publication date: February 1, 2024
    Inventors: Po-Ching HUANG, Hui Wen CHIU, Chun-Wen WANG, Pao-Long FAN, Cheng-Ping TSAI, Ting-Jui HU, Chao Chan TAN, Ming-Hung YAO, Chien-Chih SHIH, Jui-Liang HO, Ching-Kai YU, Chih-Wei LAI
  • Patent number: 11879756
    Abstract: A position detection module and a position detection system thereof are provided. The position detection module includes a first output port, a second output port, a third output port and a fourth output port. The first output port outputs a first detection signal, the second output port outputs a first position signal, the third output port outputs a second detection signal, and the fourth output port outputs a second position signal. Thus, the design of two sets of detection signals and position signals enables the position detection module to be fault-tolerant for meeting the requirements of safe dual-channel.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: January 23, 2024
    Assignee: Techman Robot Inc.
    Inventors: Chun-Wen Lai, Chih-Jan Kao, Yen-Chou Lu
  • Patent number: 11848395
    Abstract: The present invention discloses a method for preparing a bifacial PERC solar cell. The present invention has high photoelectric conversion efficiency, high appearance quality, and high EL yield, and could solve the problems of both scratching and undesirable deposition.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: December 19, 2023
    Assignees: Guangdong Aiko Solar Energy Technology Co., Ltd., ZHEJIANG AIKO SOLAR ENERGY TECHNOLOGY CO., LTD.
    Inventors: Jiebin Fang, Kang-Cheng Lin, Chun-Wen Lai, Nailin He, Wenjie Yin, Ta-Neng Ho, Gang Chen
  • Patent number: 11846556
    Abstract: A dual-loop torque sensing system includes four position sensors disposed in the motor and the reduction drive to form a dual-loop for detection to calculate the output torques. The detection of the position sensors is for confirming abnormality of the dual-loop or the position sensors. A failure alarm is issued to enhance the safety of the working environment.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: December 19, 2023
    Assignee: TECHMAN ROBOT INC.
    Inventors: Chun-Wen Lai, Yu-Chin Jiang
  • Publication number: 20230382712
    Abstract: Various embodiments of the present disclosure are directed towards a microelectromechanical system (MEMS) device. The MEMS device includes a dielectric structure disposed over a first semiconductor substrate, where the dielectric structure at least partially defines a cavity. A second semiconductor substrate is disposed over the dielectric structure. The second semiconductor substrate includes a movable mass, where opposite sidewalls of the movable mass are disposed between opposite sidewall of the cavity. An anti-stiction structure is disposed between the movable mass and the dielectric structure, where the anti-stiction structure is a first silicon-based semiconductor.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 30, 2023
    Inventors: Kuei-Sung Chang, Chun-Wen Cheng, Fei-Lung Lai, Shing-Chyang Pan, Yuan-Chih Hsieh, Yi-Ren Wang
  • Publication number: 20230382720
    Abstract: Various embodiments of the present disclosure are directed towards a microelectromechanical systems (MEMS) package comprising a wire-bond damper. A housing structure overlies a support substrate, and a MEMS structure is between the support substrate and the housing structure. The MEMS structure comprises an anchor, a spring, and a movable mass. The spring extends from the anchor to the movable mass to suspend and allow movement of the movable mass in a cavity between the support substrate and the housing structure. The wire-bond damper is on the movable mass or structure surrounding the movable mass. For example, the wire-bond damper may be on a top surface of the movable mass. As another example, the wire-bond damper may be on the support substrate, laterally between the anchor and the movable mass. Further, the wire-bond damper comprises a wire formed by wire bonding and configured to dampen shock to the movable mass.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Tsung-Lin Hsieh, Wei-Jhih Mao, Shang-Ying Tsai, Kuei-Sung Chang, Chun-Wen Cheng
  • Publication number: 20230385502
    Abstract: A semiconductor wafer defect detection system captures test images of a semiconductor wafer. The system analyzes the test images with an analysis model trained with a machine learning process. The analysis model generates simulated integrated circuit layouts based on the test images. The system detects defects in the semiconductor wafer by comparing the simulated integrated circuit layouts to reference integrated circuit layouts.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Chung-Pin CHOU, Chun-Wen WANG, Meng Ku CHI, Yan-Cheng CHEN, Jun-Xiu LIU
  • Publication number: 20230382716
    Abstract: Various embodiments of the present disclosure are directed towards an electronic device that comprises a semiconductor substrate having a first surface opposite a second surface. The semiconductor substrate at least partially defines a cavity. A first microelectromechanical systems (MEMS) device is disposed along the first surface of the semiconductor substrate. The first MEMS device comprises a first backplate and a diaphragm vertically separated from the first backplate. A second MEMS device is disposed along the first surface of the semiconductor substrate. The second MEMS device comprises spring structures and a moveable element. The spring structures are configured to suspend the moveable element in the cavity. A segment of the semiconductor substrate continuously laterally extends from under a sidewall of the first MEMS device to under a sidewall of the second MEMS device.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Chun-Wen Cheng, Chia-Hua Chu, Chun Yin Tsai, Wen Cheng Kuo
  • Patent number: 11827513
    Abstract: A MEMS support structure and a cap structure are provided. At least one vertically-extending trench is formed into the MEMS support structure or a portion of the cap structure. A vertically-extending outgassing material portion having a surface that is physically exposed to a respective vertically-extending cavity is formed in each of the at least one vertically-extending trench. A matrix material layer is attached to the MEMS support structure. A movable element laterally confined within a matrix layer is formed by patterning the matrix material layer. The matrix layer is bonded to the cap structure. A sealed chamber containing the movable element is formed. Each vertically-extending outgassing material portion has a surface that is physically exposed to the sealed chamber, and outgases a gas to increase the pressure in the sealed chamber.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: November 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kuei-Sung Chang, Tai-Bang An, Chun-Wen Cheng, Hung-Hua Lin
  • Publication number: 20230375501
    Abstract: A method of making a biochip includes forming an opening extending completely through a fluidic substrate. Forming the opening includes defining a plurality of sidewalls on the fluidic substrate, wherein the plurality of sidewalls defines a channel in fluid communication with the opening, and each of the plurality of sidewalls comprises polydimethylsiloxane (PDMS). The method further includes coating a surface of the fluidic substrate with a silicon oxide coating wherein, the silicon oxide coating is between adjacent sidewalls of the plurality of sidewalls. The method further includes bonding the fluidic substrate to a detection substrate.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Yi-Shao LIU, Chun-Ren CHENG, Chun-Wen CHENG
  • Publication number: 20230365398
    Abstract: A MEMS support structure and a cap structure are provided. At least one vertically-extending trench is formed into the MEMS support structure or a portion of the cap structure. A vertically-extending outgassing material portion having a surface that is physically exposed to a respective vertically-extending cavity is formed in each of the at least one vertically-extending trench. A matrix material layer is attached to the MEMS support structure. A movable element laterally confined within a matrix layer is formed by patterning the matrix material layer. The matrix layer is bonded to the cap structure. A sealed chamber containing the movable element is formed. Each vertically-extending outgassing material portion has a surface that is physically exposed to the sealed chamber, and outgases a gas to increase the pressure in the sealed chamber.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Kuei-Sung Chang, Tai-Bang An, Chun-Wen Cheng, Hung-Hua Lin
  • Publication number: 20230370783
    Abstract: A MEMS device and a method of manufacturing the same are provided. A semiconductor device includes a substrate; and a membrane over the substrate and configured to generate charges in response to an acoustic wave, the membrane being in a polygonal shape including vertices. The membrane includes a via pattern includes: first lines that partition the membrane into slices and extend to the vertices of the membrane such that the slices are separated from each other near an anchored region of the membrane and connected to each other around a central region; and second lines extending from the anchored region of the membrane toward the central region of the membrane, each of the first lines or each of the second lines including non-straight lines.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 16, 2023
    Inventors: CHUN-WEN CHENG, CHUN YIN TSAI, CHIA-HUA CHU
  • Patent number: 11816411
    Abstract: A semiconductor wafer defect detection system captures test images of a semiconductor wafer. The system analyzes the test images with an analysis model trained with a machine learning process. The analysis model generates simulated integrated circuit layouts based on the test images. The system detects defects in the semiconductor wafer by comparing the simulated integrated circuit layouts to reference integrated circuit layouts.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: November 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Pin Chou, Chun-Wen Wang, Meng Ku Chi, Yan-Cheng Chen, Jun-Xiu Liu
  • Patent number: 11814283
    Abstract: Various embodiments of the present disclosure are directed towards a microelectromechanical system (MEMS) device. The MEMS device includes a dielectric structure disposed over a first semiconductor substrate, where the dielectric structure at least partially defines a cavity. A second semiconductor substrate is disposed over the dielectric structure. The second semiconductor substrate includes a movable mass, where opposite sidewalls of the movable mass are disposed between opposite sidewall of the cavity. An anti-stiction structure is disposed between the movable mass and the dielectric structure, where the anti-stiction structure is a first silicon-based semiconductor.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: November 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Sung Chang, Chun-Wen Cheng, Fei-Lung Lai, Shing-Chyang Pan, Yuan-Chih Hsieh, Yi-Ren Wang
  • Patent number: 11807521
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming a microelectromechanical systems (MEMS) device. The method includes forming a filter stack over a carrier substrate. The filter stack comprises a particle filter layer having a particle filter. A support structure layer is formed over the filter stack. The support structure layer is patterned to define a support structure in the support structure layer such that the support structure has one or more segments. The support structure is bonded to a MEMS structure.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: November 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wen Cheng, Chia-Hua Chu, Wen Cheng Kuo
  • Patent number: 11803052
    Abstract: A head-mounted eye tracking system including an optical combiner, an eye tracker and a signal processor is provided. The optical combiner includes an optical coupler. The eye tracker is at least partially disposed on the optical combiner and is suitable for sensing an eyeball movement of a wearer. The eye tracker includes a plurality of light-emitting devices and a plurality of sensing devices. The plurality of light-emitting devices are suitable for emitting tracking beams. The plurality of sensing devices are suitable for receiving the tracking beams reflected by the eyeball of the wearer. The signal processor is signally connected to the eye tracker.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: October 31, 2023
    Assignee: Industrial Technology Research Institute
    Inventors: Cheng-Jhih Luo, Chia-Hsin Chao, Chun-Wen Chu, Ching-Ya Yeh
  • Publication number: 20230340962
    Abstract: A control system for operating a plurality of air compressors collectively supplying compressed air to a manufacturing facility is disclosed which includes a demand forecast module configured to estimate the manufacturing facility's demand for the compressed air at a predetermined future time, a dynamic adjustment module configured to acquire a current air pressure from the manufacturing facility, the dynamic adjustment module combining the current air pressure and the estimated manufacturing facility's demand for compressed air to make a final forecast, and an optimization module configured to determine a target operating combination of the plurality of air compressors at the predetermined future time based on the final forecast and a current operating combination of the plurality of air compressors.
    Type: Application
    Filed: July 28, 2022
    Publication date: October 26, 2023
    Applicant: WISTRON CORPORATION
    Inventors: Bang-Chun WEN, Ji WANG
  • Publication number: 20230317753
    Abstract: Optical modules and methods of forming the same are provided. In an embodiment, an exemplary method includes forming multiple first optical elements over a first wafer, forming multiple second optical elements over a second wafer, forming multiple third optical elements over a third wafer, aligning the first wafer with the second wafer such that, upon the aligning of the first wafer with the second wafer, each first optical element is vertically overlapped with a corresponding second optical element. The method also includes bonding the first wafer with the second wafer to form a first bonded structure, aligning the second wafer with the third wafer such that, and upon bonding the second wafer of the first bonded structure to the third wafer, where upon the aligning of the second wafer with the third wafer, each second optical element is vertically overlapped with a corresponding third optical element.
    Type: Application
    Filed: August 31, 2022
    Publication date: October 5, 2023
    Inventors: Jung-Huei Peng, Chun-Wen Cheng, Yi-Chien Wu