Patents by Inventor Chung-Lin Huang

Chung-Lin Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190002177
    Abstract: A stretchable piezoelectric sensor applied to logistics for real-time monitoring includes a stretchable flexible substrate and a conductive layer formed on the flexible substrate. A plurality of sensing members corresponding in number to end faces of a packaging box is adhered to the conductive layer. When the piezoelectric sensor is placed at the bottom of the packaging box containing goods, two ends of the piezoelectric sensor can be stretched to fit on the diagonal corners of the packaging box, and the sensing members are located on the respective end faces of the packaging box to achieve an all-round monitoring.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Inventors: CHENG HSIN CHUANG, WAN JUNG CHANG, CHUNG LIN HUANG, JIAN PING SU, CHENG AN WANG
  • Patent number: 10168235
    Abstract: A stretchable piezoelectric sensor applied to logistics for real-time monitoring includes a stretchable flexible substrate and a conductive layer formed on the flexible substrate. A plurality of sensing members corresponding in number to end faces of a packaging box is adhered to the conductive layer. When the piezoelectric sensor is placed at the bottom of the packaging box containing goods, two ends of the piezoelectric sensor can be stretched to fit on the diagonal corners of the packaging box, and the sensing members are located on the respective end faces of the packaging box to achieve an all-round monitoring.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: January 1, 2019
    Assignee: Southern Taiwan University of Science and Technology
    Inventors: Cheng Hsin Chuang, Wan Jung Chang, Chung Lin Huang, Jian Ping Su, Cheng An Wang
  • Patent number: 8873280
    Abstract: A spin transfer torque random access memory includes a substance unit, a source line unit, an insulation unit, a transistor unit, a MTJ unit, and a bit line unit. The substance unit includes a substance layer. The source line unit includes a plurality of source lines formed inside the substance layer. The transistor unit includes a plurality of transistors respectively disposed on the source lines. Each transistor includes a source region formed on each corresponding source line, a drain region formed above the source region, a channel region formed between the source region and the drain region, and a surrounding gate region surrounding the source region, the drain region, and the channel region. The MTJ unit includes a plurality of MTJ structures respectively disposed on the transistors. The bit line unit includes at least one bit line disposed on the MTJ unit.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: October 28, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung Han Lee, Chung-Lin Huang, Ron Fu Chu
  • Patent number: 8779494
    Abstract: The instant disclosure relates to a high-k metal gate random access memory. The memory includes a substrate, a plurality of bit line units, source regions, gate structures, drain regions, word line units, and capacitance units. The substrate has a plurality of trenches, and the bit line units are arranged on the substrate. The source regions are disposed on the bit line units, and the gate structures are disposed on the source regions. Each gate structure has a metal gate and a channel area formed therein. The gate structures are topped with the drain regions. The word lines units are arranged between the source and drain regions. The capacitance units are disposed on the drain regions. Another memory is also disclosed, where each drain region and a portion of each gate structure are disposed in the respective capacitance unit, with the drain region being a lower electrode layer.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: July 15, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron-Fu Chu
  • Publication number: 20140110818
    Abstract: A manufacturing method for the nodes of the RAM device, includes the steps as follows: forming a STI layer on a substrate to divide the substrate into several active areas; sequentially forming a first insulating layer and a hard mask layer on the substrate; etching the first insulating layer to form a first hole for exposing the STI layer and partial of the active areas; filling a conductive material in the first hole to form a conductor; forming a protective layer on the top surface of the conductor, wherein each protective layer has an opening aligning the STI layer; etching the conductor from the opening until the STI layer to form a second hole for exposing the STI layer, wherein each conductor is divided into two nodes by the second hole arranged therebetween; and forming a second insulating layer in the second hole for electrically isolating the nodes.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 24, 2014
    Applicant: INOTERA MEMORIES, INC.
    Inventors: TZUNG-HAN LEE, CHUNG-LIN HUANG
  • Patent number: 8703575
    Abstract: The instant disclosure relates to a method of forming an isolation area. The method includes the steps of: providing a substrate having a first type of ion dopants, where the substrate has a plurality of trenches formed on the cell areas and the isolation area between the cell areas of the substrate, with the side walls of the trenches having an oxidation layer formed thereon and the trenches are filled with a metallic structure; removing the metallic structure from the trenches of the isolation area; implanting a second type of ions into the substrate under the trenches of the isolation area; and filling all the trenches with an insulating structure, where the trenches of the isolation area are filled up fully by the insulating structure to form a non-metallic isolation area.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 22, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron Fu Chu
  • Patent number: 8703562
    Abstract: A manufacturing method of a random access memory includes the following steps: providing a semiconductor structure having an array region and a peripheral region; forming a plurality of first trenches in the array region, and concurrently, a plurality of second trenches on the peripheral region; forming a polysilicon layer to cover the array region and the peripheral region, and the first and the second trenches are filled up with the polysilicon layer; planarizing the polysilicon layer so the remaining polysilicon layer only resides in the first and the second trenches; forming a conductive layer on the semiconductor structure; patterning the conductive layer to form a plurality of landing pads on the array region, and a plurality of bit line units on the peripheral region; and forming a plurality of capacitor units which is in electrical connection to the landing pads.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 22, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron-Fu Chu
  • Patent number: 8604620
    Abstract: The present invention provides a semiconductor structure having a lateral TSV and a manufacturing method thereof. The semiconductor structure includes a chip having an active side, a back side disposed opposite to the active side, and a lateral side disposed between the active side and the back side. The chip further includes a contact pad, a lateral TSV and a patterned conductive layer. The contact pad is disposed on the active side. The lateral TSV is disposed on the lateral side. The patterned conductive layer is disposed on the active side and is electrically connected to the lateral TSV and the contact pad.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: December 10, 2013
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron Fu Chu, Dah-Wei Liu
  • Patent number: 8557673
    Abstract: A manufacturing method of a capacitor structure is provided, which includes the steps of: on a substrate having a first oxide layer, (a) forming a first suspension layer on the first oxide layer; (b) forming a first shallow trench into the first oxide layer above the substrate; (c) forming a second oxide layer filling the first shallow trench; (d) forming a second suspension layer on the second oxide layer; (e) forming a second shallow trench through the second suspension layer into the second oxide layer above the first suspension layer; (f) forming at least one deep trench on the bottom surface of the second shallow trench through the second and the first oxide layers, (g) forming an electrode layer on the inner surface of the deep trench; and (h) removing the first and second oxide layers through the trench openings in the first and the second suspension layers.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 15, 2013
    Assignee: Inotera Memories, Inc.
    Inventors: Shin-Bin Huang, Cheng-Yeh Hsu, Chung-Lin Huang
  • Publication number: 20130252397
    Abstract: A manufacturing method of a capacitor structure is provided, which includes the steps of: on a substrate having a first oxide layer, (a) forming a first suspension layer on the first oxide layer; (b) forming a first shallow trench into the first oxide layer above the substrate; (c) forming a second oxide layer filling the first shallow trench; (d) forming a second suspension layer on the second oxide layer; (e) forming a second shallow trench through the second suspension layer into the second oxide layer above the first suspension layer; (f) forming at least one deep trench on the bottom surface of the second shallow trench through the second and the first oxide layers, (g) forming an electrode layer on the inner surface of the deep trench; and (h) removing the first and second oxide layers through the trench openings in the first and the second suspension layers.
    Type: Application
    Filed: May 21, 2012
    Publication date: September 26, 2013
    Applicant: INOTERA MEMORIES, INC.
    Inventors: SHIN-BIN HUANG, CHENG-YEH HSU, CHUNG-LIN HUANG
  • Publication number: 20130203233
    Abstract: A manufacturing method of a memory capacitor without a moat structure includes the steps of: providing a semiconductor substrate defined with an array region and a peripheral region; forming a first oxidized layer on the array region; forming a second oxidized layer on the peripheral region; planarizing the first and the second oxidized layers; forming an insulating layer on the first and the second oxidized layers; forming a plurality of trenches on the array region, where the trenches pass through the first oxidized layer and the insulating layer on the first oxidized layer; forming a conductive layer on the side and base surfaces of each trench; removing a portion of the conductive layer and a portion of the insulating layer to form a plurality of notches to expose the first oxidized layer; and removing the first oxidized layers which are exposed from the notches.
    Type: Application
    Filed: May 2, 2012
    Publication date: August 8, 2013
    Applicant: INOTERA MEMORIES, INC.
    Inventors: TZUNG-HAN LEE, CHUNG-LIN HUANG, RON-FU CHU
  • Publication number: 20130203232
    Abstract: A manufacturing method of a random access memory includes the following steps: providing a semiconductor structure having an array region and a peripheral region; forming a plurality of first trenches in the array region, and concurrently, a plurality of second trenches on the peripheral region; forming a polysilicon layer to cover the array region and the peripheral region, and the first and the second trenches are filled up with the polysilicon layer; planarizing the polysilicon layer so the remaining polysilicon layer only resides in the first and the second trenches; forming a conductive layer on the semiconductor structure; patterning the conductive layer to form a plurality of landing pads on the array region, and a plurality of bit line units on the peripheral region; and forming a plurality of capacitor units which is in electrical connection to the landing pads.
    Type: Application
    Filed: March 22, 2012
    Publication date: August 8, 2013
    Applicant: INOTERA MEMORIES, INC.
    Inventors: TZUNG-HAN LEE, CHUNG-LIN HUANG, RON-FU CHU
  • Patent number: 8486801
    Abstract: A fabricating method of a DRAM structure includes providing a substrate comprising a memory array region and a peripheral region. A buried gate transistor is disposed within the memory array region, and a planar gate transistor is disposed within the peripheral region. Furthermore, an interlayer dielectric layer covers the memory array region, the buried gate transistor and the planar gate transistor. Then, a capping layer of the planar gate transistor and part of the interlayer dielectric layer are removed simultaneously so that a first contact hole, a second contact hole and a third contact hole are formed in the interlayer dielectric layer. A drain doping region of the buried gate transistor is exposed through the first contact hole, a doping region of the planar gate transistor is exposed through the second contact hole, and a gate electrode of the planar gate transistor is exposed through the third contact hole.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: July 16, 2013
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron Fu Chu
  • Publication number: 20130168751
    Abstract: The instant disclosure relates to a high-k metal gate random access memory. The memory includes a substrate, a plurality of bit line units, source regions, gate structures, drain regions, word line units, and capacitance units. The substrate has a plurality of trenches, and the bit line units are arranged on the substrate. The source regions are disposed on the bit line units, and the gate structures are disposed on the source regions. Each gate structure has a metal gate and a channel area formed therein. The gate structures are topped with the drain regions. The word lines units are arranged between the source and drain regions The capacitance units are disposed on the drain regions. Another memory is also disclosed, where each drain region and a portion of each gate structure are disposed in the respective capacitance unit, with the drain region being a lower electrode layer.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 4, 2013
    Applicant: INOTERA MEMORIES, INC.
    Inventors: TZUNG-HAN LEE, CHUNG-LIN HUANG, RON FU CHU
  • Publication number: 20130168812
    Abstract: A manufacturing method for memory capacitor having a robust moat, comprising the steps of: providing a substrate; forming a patterned sacrificial layer on the substrate having a moat to separate a cell area and a peripheral area; forming a supporting layer on the sacrificial layer and filling the moat to form a annular member, wherein the supporting layer and the sacrificial layer arranged in alignment to form a stack structure; forming a plurality row of capacitor trenches on the substrate, wherein the capacitor trenches are formed at intervals in the stack structure; and forming a conducting layer on the supporting layer and covering the substrate and the inner surface of the stack structure defining the capacitor trenches.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 4, 2013
    Applicant: INOTERA MEMORIES, INC.
    Inventors: TZUNG-HAN LEE, CHUNG-LIN HUANG, RON-FU CHU
  • Publication number: 20130168811
    Abstract: The instant disclosure relates to a capacitor having multi-layered electrodes. The capacitor includes a dielectric layer having a first surface and a second surface oppositely arranged, a first electrode formed on the first surface, and a second electrode formed on the second surface. At least one of the first and second electrodes having a low band gap material layer formed on the dielectric layer and a conducting layer formed on the low band gap material layer. The band gap of the low band gap material layer is lower than the band gap of the conducting layer.
    Type: Application
    Filed: March 12, 2012
    Publication date: July 4, 2013
    Applicant: INOTERA MEMORIES, INC.
    Inventors: TZUNG-HAN LEE, CHUNG-LIN HUANG, RON-FU CHU
  • Publication number: 20130168801
    Abstract: The instant disclosure relates to a method of forming an isolation area. The method includes the steps of: providing a substrate having a first type of ion dopants, where the substrate has a plurality of trenches formed on the cell areas and the isolation area between the cell areas of the substrate, with the side walls of the trenches having an oxidation layer formed thereon and the trenches are filled with a metallic structure; removing the metallic structure from the trenches of the isolation area; implanting a second type of ions into the substrate under the trenches of the isolation area; and filling all the trenches with an insulating structure, where the trenches of the isolation area are filled up fully by the insulating structure to form a non-metallic isolation area.
    Type: Application
    Filed: March 16, 2012
    Publication date: July 4, 2013
    Applicant: INOTERA MEMORIES, INC.
    Inventors: TZUNG-HAN LEE, CHUNG-LIN HUANG, RON FU CHU
  • Patent number: 8471320
    Abstract: A memory array layout includes an active region array having a plurality of active regions, wherein the active regions are arranged alternatively along a second direction and parts of the side of the adjacent active regions are overlapped along a second direction; a plurality of first doped region, wherein each first doped region is disposed in a middle region; a plurality of second doped region, wherein each second doped region is disposed in a distal end region respectively; a plurality of recessed gate structures; a plurality of word lines electrically connected to each recessed gate structure respectively; a plurality of digit lines electrically connected to the first doped region respectively; and a plurality of capacitors electrically connected to each second doped region respectively.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: June 25, 2013
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron Fu Chu
  • Publication number: 20130146954
    Abstract: The present invention provides a memory array including a substrate, an isolation region, a plurality of active regions, a plurality of buried bit lines, a plurality of word lines, a plurality of drain regions and a plurality of capacitors. The isolation region and the active regions are disposed in the substrate and the active regions are encompassed and isolated by the isolation region. The buried bit lines are disposed in the substrate and extend in the second direction. The word lines are disposed in the substrate extend in the first direction. The drain regions are disposed in the active region not covered by the word lines. The capacitors are disposed on the substrate and electrically connected to the drain regions.
    Type: Application
    Filed: March 26, 2012
    Publication date: June 13, 2013
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron Fu Chu
  • Publication number: 20130140620
    Abstract: The present invention discloses a flash memory. The flash memory includes a substrate and a memory string, a plurality of landing pads, a plurality of common source lines, a plurality of bit line contacts and at least a bit line, which are disposed on the substrate in sequence. The memory string includes a plurality of storage transistors. The landing pads are disposed between each of the storage transistors. The common source lines and the bit line contact are electrically connected to the landing pads alternatively. The common line is disposed on the common line contacts and is electrically connected thereto. The present invention further provides a manufacturing method of making the same.
    Type: Application
    Filed: February 17, 2012
    Publication date: June 6, 2013
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron Fu Chu, Dah-Wei Liu