Patents by Inventor Chung-Lin Huang

Chung-Lin Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7855124
    Abstract: A method for forming a semiconductor device, includes the steps of providing a substrate; forming a patterned stack on the substrate including a first dielectric layer on the substrate, a first conductive layer on the first dielectric layer and a mask layer on the first conductive layer, wherein a width of the mask layer is smaller than a width of the first conductive layer; forming a second dielectric layer on the sidewall of the patterned stack; forming a third dielectric layer on the substrate; forming a second conductive layer over the substrate; and removing the mask layer and a portion of the first conductive layer covered by the mask layer to form an opening so as to partially expose the first conductive layer.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: December 21, 2010
    Assignee: Nanya Technology Corp.
    Inventors: Hung-Ming Tsai, Ching-Nan Hsiao, Chung-Lin Huang
  • Publication number: 20100279472
    Abstract: In a manufacturing method of a non-volatile memory, a substrate is provided, and strip-shaped isolation structures are formed in the substrate. A first memory array including memory cell columns is formed on the substrate. Each memory cell column includes memory cells connected in series with one another, a source/drain region disposed in the substrate outside the memory cells, select transistors disposed between the source/drain region and the memory cells, control gate lines extending across the memory cell columns and in a second direction, and first select gate lines respectively connecting the select transistors in the second direction in series. First contacts are formed on the substrate at a side of the first memory array and arranged along the second direction. Each first contact connects the source/drain regions in every two adjacent active regions.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 4, 2010
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Hung-Mine Tsai, Ching-Nan Hsiao, Chung-Lin Huang
  • Publication number: 20100279499
    Abstract: A method for manufacturing a memory includes first providing a substrate with a horizontally adjacent control gate region and floating gate region which includes a sacrificial layer and sacrificial sidewalls, removing the sacrificial layer and sacrificial sidewalls to expose the substrate, forming dielectric sidewalls adjacent to the control gate region, forming a floating gate dielectric layer on the exposed substrate and forming a floating gate layer adjacent to the dielectric sidewalls and on the floating gate dielectric layer.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 4, 2010
    Inventors: Hung-Mine Tsai, Ching-Nan Hsiao, Chung-Lin Huang
  • Patent number: 7781279
    Abstract: A method for manufacturing a memory includes first providing a substrate with a horizontally adjacent control gate region and floating gate region which includes a sacrificial layer and sacrificial sidewalls, removing the sacrificial layer and sacrificial sidewalls to expose the substrate, forming dielectric sidewalls adjacent to the control gate region, forming a floating gate dielectric layer on the exposed substrate and forming a floating gate layer adjacent to the dielectric sidewalls and on the floating gate dielectric layer.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: August 24, 2010
    Assignee: Nanya Technology Corp.
    Inventors: Hung-Mine Tsai, Ching-Nan Hsiao, Chung-Lin Huang
  • Patent number: 7781804
    Abstract: A non-volatile memory disposed on a substrate includes active regions, a memory array, and contacts. The active regions defined by isolation structures disposed in the substrate are extended in a first direction. The memory array is disposed on the substrate and includes memory cell columns, control gate lines and select gate lines. Each of the memory cell columns includes memory cells connected to one another in series and a source/drain region disposed in the substrate outside the memory cells. The contacts are disposed on the substrate at a side of the memory array and arranged along a second direction. The second direction crosses over the first direction. Each of the contacts extends across the isolation structures and connects the source/drain regions in the substrate at every two of the adjacent active regions.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: August 24, 2010
    Assignee: Nanya Technology Corporation
    Inventors: Hung-Mine Tsai, Ching-Nan Hsiao, Chung-Lin Huang
  • Patent number: 7713820
    Abstract: A method for manufacturing a non-volatile memory is provided. An isolation structure is formed in a trench formed in a substrate. A portion of the isolation structure is removed to form a recess. A first dielectric layer and a first conductive layer are formed sequentially on the substrate. Bar-shaped cap layers are formed on the substrate. The first conductive layer not covered by the bar-shaped cap layers is removed to form first gate structures. A second dielectric layer is formed on the sidewalls of the first gate structures. A third dielectric layer is formed on the substrate between the first gate structures. A second conductive layer is formed on the third dielectric layer. The bar-shaped cap layers and a portion of the first conductive layer are removed to form second gate structures. A doped region is formed in the substrate at two sides of each of the second gate structures.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: May 11, 2010
    Assignee: Nanya Technology Corporation
    Inventors: Hung-Mine Tsai, Ching-Nan Hsiao, Chung-Lin Huang
  • Patent number: 7714445
    Abstract: The invention provides a dynamic random access memory (DRAM) with an electrostatic discharge (ESD) region. The upper portion of the ESD plug is metal, and the lower portion of the ESD plug is polysilicon. This structure may improve the mechanical strength of the ESD region and enhance thermal conductivity from electrostatic discharging. In addition, the contact area between the ESD plugs and the substrate can be reduced without increasing aspect ratio of the ESD plugs. The described structure is completed by a low critical dimension controlled patterned photoresist, such that the processes and equipments are substantially maintained without changing by a wide margin.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: May 11, 2010
    Assignee: Nanya Technology Corporation
    Inventors: Ching-Nan Hsiao, Ying-Cheng Chuang, Chung-Lin Huang, Shih-Yang Chiu
  • Patent number: 7700991
    Abstract: A method for fabricating the memory structure includes: providing a substrate having a pad, forming an opening in the pad, forming a first spacer on a sidewall of the opening, filling the opening with a sacrificial layer, removing the first spacer and exposing a portion of the substrate, removing the exposed substrate to define a first trench and a second trench, removing the sacrificial layer to expose a surface of the substrate to function as a channel region, forming a first dielectric layer on a surface of the first trench, a surface of the second trench and a surface of the channel region, filling the first trench and the second trench with a first conductive layer, forming a second dielectric layer on a surface of the first conductive layer and the surface of the channel region, filling the opening with a second conductive layer, and removing the pad.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: April 20, 2010
    Assignee: Nanya Technology Corp.
    Inventors: Ching-Nan Hsiao, Ying-Cheng Chuang, Chung-Lin Huang, Shih-Yang Chiu
  • Patent number: 7682902
    Abstract: A memory structure disclosed in the present invention features a control gate and floating gates being positioned in recessed trenches. A method of fabricating the memory structure includes the steps of first providing a substrate having a first recessed trench. Then, a first gate dielectric layer is formed on the first recessed trench. A first conductive layer is formed on the first gate dielectric layer. After that, the first conductive layer is etched to form a spacer which functions as a floating gate on a sidewall of the first recessed trench. A second recessed trench is formed in a bottom of the first recessed trench. An inter-gate dielectric layer is formed on a surface of the spacer, a sidewall and a bottom of the second recessed trench. A second conductive layer formed to fill up the first and the second recessed trench.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: March 23, 2010
    Assignee: Nanya Technology Corp.
    Inventors: Ching-Nan Hsiao, Pei-Ing Lee, Ming-Cheng Chang, Chung-Lin Huang, Hsi-Hua Chang, Chih-Hsiang Wu
  • Publication number: 20100013062
    Abstract: A nonvolatile memory cell is provided. A semiconductor substrate is provided. A conducting layer and a spacer layer are sequentially disposed above the semiconductor substrate. At least a trench having a bottom and plural side surfaces is defined in the conducting layer and the spacer layer. A first oxide layer is formed at the bottom of the trench. A dielectric layer is formed on the first oxide layer, the spacer layer and the plural side surfaces of the trench. A first polysilicon layer is formed in the trench. And a first portion of the dielectric layer on the spacer layer is removed, so that a basic structure for the nonvolatile memory cell is formed.
    Type: Application
    Filed: October 2, 2008
    Publication date: January 21, 2010
    Applicant: NANYA TECHNOLOGY CORP.
    Inventors: Shin-Bin Huang, Ching-Nan Hsiao, Chung-Lin Huang
  • Patent number: 7642191
    Abstract: A method of forming a semiconductor structure is provided. The method includes providing a substrate and forming a mask layer on the substrate, Next, dielectric isolations are formed in the mask layer and the substrate, wherein the dielectric isolations extend above the substrate. Then, the mask layer is removed to expose a portion of the substrate, and a dielectric layer is formed on the exposed portion of the substrate. Subsequently, a first conductive layer is formed on the dielectric layer, and a portion of the dielectric isolation is removed, wherein a top surface of the remaining dielectric isolation is lower than a top surface of the first conductive layer. Moreover, a conformal layer is formed over the substrate, and a second conductive layer is formed on the conformal layer.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: January 5, 2010
    Assignee: Nanya Technology Corp.
    Inventors: Hung-Mine Tsai, Ching-Nan Hsiao, Chung-Lin Huang
  • Patent number: 7576381
    Abstract: A memory structure including a substrate, a first dielectric layer, a first conducting layer, a second conducting layer, a second dielectric layer, a spacer and a doped region is provided. The substrate has a trench wherein. The first dielectric layer is disposed on the interior surface of the trench. The first conducting layer is disposed on the first dielectric layer of the lower portion of the trench. The second conducting layer is disposed above the first conducting layer and filling the trench. The second dielectric layer is disposed between the first conducting layer and the second conducting layer. The spacer is disposed between the first dielectric layer and the second conducting layer. The doped region is disposed in the substrate of a side of the trench.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: August 18, 2009
    Assignee: Nanya Technology Corporation
    Inventors: Ching-Nan Hsiao, Ying-Cheng Chuang, Chung-Lin Huang, Shih-Yang Chiu
  • Publication number: 20090127610
    Abstract: A non-volatile memory disposed on a substrate includes active regions, a memory array, and contacts. The active regions defined by isolation structures disposed in the substrate are extended in a first direction. The memory array is disposed on the substrate and includes memory cell columns, control gate lines and select gate lines. Each of the memory cell columns includes memory cells connected to one another in series and a source/drain region disposed in the substrate outside the memory cells. The contacts are disposed on the substrate at a side of the memory array and arranged along a second direction. The second direction crosses over the first direction. Each of the contacts extends across the isolation structures and connects the source/drain regions in the substrate at every two of the adjacent active regions.
    Type: Application
    Filed: April 11, 2008
    Publication date: May 21, 2009
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Hung-Mine Tsai, Ching-Nan Hsiao, Chung-Lin Huang
  • Publication number: 20090124059
    Abstract: A method for forming a semiconductor device, includes the steps of providing a substrate; forming a patterned stack on the substrate including a first dielectric layer on the substrate, a first conductive layer on the first dielectric layer and a mask layer on the first conductive layer, wherein a width of the mask layer is smaller than a width of the first conductive layer; forming a second dielectric layer on the sidewall of the patterned stack; forming a third dielectric layer on the substrate; forming a second conductive layer over the substrate; and removing the mask layer and a portion of the first conductive layer covered by the mask layer to form an opening so as to partially expose the first conductive layer.
    Type: Application
    Filed: February 22, 2008
    Publication date: May 14, 2009
    Applicant: NANYA TECHNOLOGY CORP.
    Inventors: Hung-Ming TSAI, Ching-Nan HSIAO, Chung-Lin HUANG
  • Publication number: 20090087975
    Abstract: A method for manufacturing a memory includes first providing a substrate with a horizontally adjacent control gate region and floating gate region which includes a sacrificial layer and sacrificial sidewalls, removing the sacrificial layer and sacrificial sidewalls to expose the substrate, forming dielectric sidewalls adjacent to the control gate region, forming a floating gate dielectric layer on the exposed substrate and forming a floating gate layer adjacent to the dielectric sidewalls and on the floating gate dielectric layer.
    Type: Application
    Filed: January 23, 2008
    Publication date: April 2, 2009
    Inventors: Hung-Mine Tsai, Ching-Nan Hsiao, Chung-Lin Huang
  • Publication number: 20090087544
    Abstract: The memory cell of the present invention has two independent storage regions embedded into two opposite sidewalls of the control gate respectively. In this way, the data storage can be more reliable. Other features of the present invention are that the thickness of the dielectric layers is different, and the two independent storage regions are formed on opposite bottom sides of the opening by the etching process and form a shape like a spacer. The advantage of the aforementioned method is that the fabricating process is simplified and the difficulty of self-alignment is reduced.
    Type: Application
    Filed: February 29, 2008
    Publication date: April 2, 2009
    Inventors: Mao-Quan Chen, Ching-Nan Hsiao, Chung-Lin Huang
  • Publication number: 20090065846
    Abstract: A manufacturing method of a non-volatile memory includes forming a first dielectric layer, a first conductive layer, and a first cap layer sequentially on a substrate to form first gate structures; conformally forming a second dielectric layer on the substrate; forming a first spacer having a larger wet etching rate than the second dielectric layer on each sidewall of each first gate structure; partially removing the first and second dielectric layers to expose the substrate. A third dielectric layer is formed on the substrate between the first gate structures; removing the first spacer; forming a second conductive layer on the third dielectric layer; removing the first cap layer and a portion of the first conductive layer to form second gate structures; and forming doped regions in the substrate at two sides of each second gate structure.
    Type: Application
    Filed: December 13, 2007
    Publication date: March 12, 2009
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Hung-Mine Tsai, Ching-Nan Hsiao, Chung-Lin Huang
  • Publication number: 20090061581
    Abstract: A method for manufacturing a non-volatile memory is provided. An isolation structure is formed in a trench formed in a substrate. A portion of the isolation structure is removed to form a recess. A first dielectric layer and a first conductive layer are formed sequentially on the substrate. Bar-shaped cap layers are formed on the substrate. The first conductive layer not covered by the bar-shaped cap layers is removed to form first gate structures. A second dielectric layer is formed on the sidewalls of the first gate structures. A third dielectric layer is formed on the substrate between the first gate structures. A second conductive layer is formed on the third dielectric layer. The bar-shaped cap layers and a portion of the first conductive layer are removed to form second gate structures. A doped region is formed in the substrate at two sides of each of the second gate structures.
    Type: Application
    Filed: November 26, 2007
    Publication date: March 5, 2009
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Hung-Mine Tsai, Ching-Nan Hsiao, Chung-Lin Huang
  • Publication number: 20090053873
    Abstract: A method of forming a semiconductor structure is provided. The method includes providing a substrate and forming a mask layer on the substrate. Next, dielectric isolations are formed in the mask layer and the substrate, wherein the dielectric isolations extend above the substrate. Then, the mask layer is removed to expose a portion of the substrate, and a dielectric layer is formed on the exposed portion of the substrate. Subsequently, a first conductive layer is formed on the dielectric layer, and a portion of the dielectric isolation is removed, wherein a top surface of the remaining dielectric isolation is lower than a top surface of the first conductive layer. Moreover, a conformal layer is formed over the substrate, and a second conductive layer is formed on the conformal layer.
    Type: Application
    Filed: January 24, 2008
    Publication date: February 26, 2009
    Applicant: NANYA TECHNOLOGY CORP.
    Inventors: Hung-Mine TSAI, Ching-Nan HSIAO, Chung-Lin HUANG
  • Publication number: 20090047765
    Abstract: A method of manufacturing a non-volatile memory is provided. In the method, a first dielectric layer, a first conductive layer, and a first cap layer are formed sequentially on a substrate. The first cap layer and the first conductive layer are patterned to form first gate structures. A second dielectric layer is formed on the sidewall of the first gate structures, and a portion of the first dielectric layer is removed to expose the substrate between the first gate structures. An epitaxy layer is formed on the substrate between two first gate structures. A third dielectric layer is formed on the epitaxy layer. A second conductive layer is formed on the third dielectric layer. The first cap layer and a portion of the first conductive layer are removed to form second gate structures. Finally, a doped region is formed in the substrate at two sides of the second gate structures.
    Type: Application
    Filed: December 13, 2007
    Publication date: February 19, 2009
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Hung-Mine Tsai, Ching-Nan Hsiao, Chung-Lin Huang